Minkowski functionals for isotropic random fields in the Euclidean space and the sphere

Kuriki, Satoshi

Inst. Statist. Math. (ISM) and SOKENDAI

Statistical Analysis of Random Fields in Cosmology KEK-Cosmo 2024, Mon 4 March 2024

Joint work with T. Matsubara and C. Hikage

Contents of talk

I. MFs for isotropic random fields: The Euclidean space case Matsubara \& K (2021), Matsubara, Hikage \& K (2022), K and Matsubara (2023)
II. MFs for isotropic random fields: The sphere case

Contents of talk

I. MFs for isotropic random fields: The Euclidean space case Matsubara \& K (2021), Matsubara, Hikage \& K (2022), K and Matsubara (2023)
II. MFs for isotropic random fields: The sphere case

Excursion set for a smooth isotropic random field

- Isotropic random field $X(t), t \in T \subset \mathbb{R}^{n}$: $\forall T^{\prime}($ finite set $) \subset T$,

$$
\{X(t)\}_{t \in T^{\prime}} \stackrel{d}{=}\{X(P t+b)\}_{t \in T^{\prime}}, \forall(P, b) \in O(n) \times \mathbb{R}^{n}
$$

- Excursion set is the sup-level set of a function $X(t)$:

$$
T_{v}=\{t \in T \mid X(t) \geq v\}=X^{-1}([v, \infty))
$$

Left: Isotropic random field, Right: Its excursion set

Minkowski functional (MF) and Lipschitz-Killing curvature

- Let $M \subset \mathbb{R}^{n}$ be a closed set. Tube about M with radius ρ :

$$
\operatorname{Tube}(M, \rho)=\left\{x \in \mathbb{R}^{n} \mid \operatorname{dist}(x, M) \leq \rho\right\}
$$

- Definitions of Minkowski functional $\mathcal{V}_{j}(\cdot)$ and Lipschitz-Killing curvature $\mathcal{L}_{j}(\cdot)$:
For small $\rho>0$, and $\omega_{d}=\pi^{d / 2} / \Gamma(d / 2+1)$,
$\operatorname{Vol}_{n}(\operatorname{Tube}(M, \rho))=\sum_{j=0}^{n} \omega_{n-j} \rho^{n-j} \mathcal{L}_{j}(M)=\sum_{j=0}^{n} \rho^{j}\binom{n}{j} \mathcal{V}_{j}(M)$
($\mathcal{L}_{j}(\cdot)$ is defined independently of the ambient space)

When the dimension n is 2

- When $n=2$,

$$
\begin{aligned}
& \mathcal{L}_{2}(M)=\mathcal{V}_{0}(M)=\int_{M} \mathrm{~d} x=\operatorname{Area}(M) \\
& \mathcal{L}_{1}(M)=\mathcal{V}_{1}(M)=\frac{1}{2} \int_{\partial M} \mathrm{~d} x=\frac{1}{2} \operatorname{Length}(\partial M) \\
& \mathcal{L}_{0}(M)=\frac{1}{\pi} \mathcal{V}_{2}(M)=\chi(M) \quad(\text { Euler characteristics })
\end{aligned}
$$

- For general n and $i, \mathcal{L}_{i}(M)$ is represented as an integral of the curvature measure over ∂M.

MF of the excursion set T_{v} as a goodness-of-fit statistic

- The Minkowski functional $\mathcal{V}_{j}\left(T_{v}\right)$ of the excursion set T_{v} can be used as a statistic for testing goodness-of-fit (e.g., applications in cosmology)

Gaussian

non-Gaussian

- observed Euler characteristic $\chi\left(T_{v}\right)$
- $\mathbb{E}\left[\chi\left(T_{v}\right)\right]$ under the assumption of Gaussianity
- Our purpose: To obtain the formulas $\mathbb{E}\left[\chi\left(T_{v}\right)\right]$ (and $\mathbb{E}\left[\mathcal{L}_{k}\left(T_{v}\right)\right]$) under non-Gaussian distributions

Kinematic Formula for isotropic random fields

Fact (Kinematic Formula in \mathbb{R}^{n})
For $A, B \subset \mathbb{R}^{n}$ and for $g B=\{P x+b \mid x \in B\}$ (g: rigid motion),

$$
\int \chi(A \cap g B) \mathrm{d} g \propto \sum_{d=0}^{n} \mathcal{L}_{d}(A) \mathcal{L}_{n-d}(B) .
$$

- Let $A:=T, g B:=\left\{t \in \mathbb{R}^{n} \mid X(t) \geq x\right\}$, then $A \cap g B=T_{x}$.

Proposition (Kinematic Formula for isotropic random fields) When $X(t), t \in T$, is a smooth isotropic random field,

$$
\mathbb{E}\left[\chi\left(T_{x}\right)\right]=\mathbb{E}\left[\mathcal{L}_{0}\left(T_{x}\right)\right]=\sum_{d=0}^{n} \mathcal{L}_{d}(T) \Xi_{d}(x),
$$

where $\Xi_{d}(x)$ is the Euler characteristic density.

$\mathbb{E}\left[\mathcal{L}_{k}\left(T_{x}\right)\right]$ for $k \geq 1$

- Expected MF except for $k \geq 1$:

$$
\mathbb{E}\left[\mathcal{L}_{k}\left(T_{x}\right)\right]=\sum_{d=0}^{n-k} \frac{\Gamma\left(\frac{k+d+1}{2}\right) \Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{k+1}{2}\right) \Gamma\left(\frac{d+1}{2}\right)} \mathcal{L}_{k+d}(T) \Xi_{d}(x), \quad k=1, \ldots, n
$$

- We only need to know the Euler characteristic density $\Xi_{d}(x)$.

EC density for the Gaussian random field

Proposition (Tomita, 1986, PTP, and many)
Suppose that $\operatorname{Var}(\nabla X(t))=\gamma I$. When $X(t)$ is Gaussian,

$$
\Xi_{d}(x)=(\gamma / 2 \pi)^{d / 2} \phi(x) H_{d-1}(x)
$$

where $\phi(x)$: pdf of $\mathcal{N}(0,1), H_{j}(x)$: Hermite polynomial

- Therefore,

$$
\mathbb{E}\left[\chi\left(T_{x}\right)\right]=\sum_{d=0}^{n} \mathcal{L}_{d}(T)(\gamma / 2 \pi)^{d / 2} \phi(x) H_{d-1}(x)
$$

- When $X(t)$ is not Gaussian?

Weakly non-Gaussian case

- The non-Gaussianity is characterized by k-point correlation functions (k-th cumulant). In the applications to cosmology,

$$
\operatorname{cum}\left(X\left(t_{1}\right), \ldots, X\left(t_{k}\right)\right)=O\left(\nu^{k-2}\right), \quad \nu \ll 1
$$

- e.g., Central limit random fields by Chamandy, et al. (2008):

$$
X(t)=\frac{1}{\sqrt{N}} \sum_{i=1}^{N} Z_{(i)}(t), \quad \nu=1 / \sqrt{N} .
$$

$Z_{(i)}$: zero mean i.i.d. isotropic non-Gaussian random field.

- The k-point correlation function for the isotropic random field:

$$
\begin{aligned}
& \operatorname{cum}\left(X\left(t_{1}\right), \ldots, X\left(t_{k}\right)\right) \\
& =\nu^{k-2} \kappa^{(k)}\left(\frac{1}{2}\left\|t_{1}-t_{2}\right\|^{2}, \frac{1}{2}\left\|t_{1}-t_{3}\right\|^{2}, \ldots, \frac{1}{2}\left\|t_{k-1}-t_{k}\right\|^{2}\right)
\end{aligned}
$$

(A function of pairwise distances between t_{1}, \ldots, t_{k})

Asymptotic expansion of the Euler density I

Theorem
Under regularity conditions, as $\nu \rightarrow 0$ uniformly in x,

$$
\Xi_{d, \nu}(x)=\left(\frac{\gamma}{2 \pi}\right)^{d / 2} \phi(x)\left(H_{d-1}(x)+\nu \Delta_{1, d}(x)+\nu^{2} \Delta_{2, d}(x)\right)+o\left(\nu^{-2}\right)
$$

where

$$
\begin{gathered}
\Delta_{1, d}(x)=\frac{1}{2 \gamma^{2}} \kappa_{11}(d)_{2} H_{d-2}(x)-\frac{1}{2 \gamma} \kappa_{1} d H_{d}(x)+\frac{1}{6} \kappa_{0} H_{d+2}(x) \\
\kappa_{0}=\kappa^{(3)}(0,0,0), \kappa_{1}=\left.\frac{\mathrm{d} \kappa^{(3)}(x, 0,0)}{\mathrm{d} x}\right|_{x=0}, \kappa_{11}=\left.\frac{\mathrm{d}^{2} \kappa^{(3)}(x, y, 0)}{\mathrm{d} x \mathrm{~d} y}\right|_{x=y=0}
\end{gathered}
$$

Asymptotic expansion of the Euler density II

and

$$
\begin{aligned}
\Delta_{2, d}(x)= & \left(-\frac{1}{6 \gamma^{3}}\left(3 \widetilde{\kappa}_{111}^{a}+\widetilde{\kappa}_{111}^{d}\right)+\frac{1}{8 \gamma^{4}}(d-7) \kappa_{11}^{2}\right)(d)_{3} H_{d-3}(x) \\
& +\left(\frac{1}{8 \gamma^{2}} \widetilde{\kappa}_{11}^{a a}(d-2)+4 \widetilde{\kappa}_{11}^{a}(d-1)\right. \\
& \left.-\frac{1}{4 \gamma^{3}} \kappa_{1} \kappa_{11}(d-1)(d-4)\right) d H_{d-1}(x) \\
& +\left(-\frac{1}{4 \gamma} \widetilde{\kappa}_{1}+\frac{1}{24 \gamma^{2}}\left(3 \kappa_{1}^{2}(d-2)+2 \kappa_{0} \kappa_{11}(d-1)\right)\right) d H_{d+1}(x) \\
& +\left(\frac{1}{24} \widetilde{\kappa}_{0}-\frac{1}{12 \gamma} \kappa_{0} \kappa_{1} d\right) H_{d+3}(x)+\frac{1}{72} \kappa_{0}^{2} H_{d+5}(x)
\end{aligned}
$$

$\widetilde{\kappa}_{0}=\kappa^{(4)}(0,0,0,0,0,0), \widetilde{\kappa}_{1}=\left.\frac{\mathrm{d} \kappa^{(4)}\left(x_{1}, 0,0,0,0,0\right)}{\mathrm{d} x_{1}}\right|_{x_{1}=0}, \ldots$

Sketch of the proof

- Kac-Rice formula (Morse theory) for the EC density:

$$
\begin{equation*}
\Xi_{d}(v)=\mathbb{E}\left[\chi\left(T_{v}\right)\right]=\mathbb{E}\left[\mathbb{1}(X(t) \geq v) \operatorname{det}\left(-\nabla^{2} X(t)\right) \delta(\nabla X(t))\right] \tag{*}
\end{equation*}
$$

$\Xi_{d}(v)$ is independent of t (because X is isotropic).

- Obtain the Edgeworth expansion of the pdf (or mgf) of

$$
\left(X(t), \nabla X(t), \nabla^{2} X(t)\right) \in \mathbb{R}^{1+d+d(d+1) / 2}
$$

and evaluate $\Xi_{d}(v)$ by $(*)$.

(Non)Detectable non-Gaussianity

- Diagram of the derivatives:

$$
\begin{gathered}
\left.\frac{\partial}{\partial x_{12}} \frac{\partial}{\partial x_{13}} \frac{\partial}{\partial x_{14}} \frac{\partial}{\partial x_{45}} \frac{\partial}{\partial x_{46}} \kappa^{(6)}\left(x_{12}, \ldots, x_{56}\right)\right|_{x=0} \\
\left.\frac{\partial}{\partial x_{12}} \frac{\partial}{\partial x_{13}} \frac{\partial}{\partial x_{14}} \frac{\partial}{\partial x_{23}} \frac{\partial}{\partial x_{45}} \frac{\partial}{\partial x_{46}} \kappa^{(6)}\left(x_{12}, \ldots, x_{56}\right)\right|_{x=0} 6
\end{gathered}
$$

Theorem
The derivatives with loops do not appear in the formula for $\Xi_{d}(v)$.

- In particular, the second derivatives don't appear

$$
\left.\left(\frac{\partial}{\partial x_{12}}\right)^{2} \frac{\partial}{\partial x_{23}} \kappa^{(3)}\left(x_{12}, x_{13}, x_{23}\right)\right|_{x=0}
$$

Chi-square random field

- A weakly non-Gaussian random field when d.f. is large:

$$
Y(t)=Y_{N}(t)=\frac{1}{\sqrt{2 N}} \sum_{i=1}^{N}\left(Z_{(i)}(t)^{2}-1\right), \quad t \in T \subset \mathbb{R}^{4}
$$

$Z_{(i)}(t)$: zero mean Gaussian s.t. $\mathbb{E}\left[Z_{(i)}(s) Z_{(i)}(t)\right]=e^{-\frac{1}{4}\|s-t\|^{2}}$, $i=1,2, \ldots$ i.i.d.

- The EC density for $Y(t)$ is known:

EC density, $N=100$ (-.- true, \cdots Oth approx, - -1st approx, -2nd approx)

Difference from the true, $N=100$
($\cdots 0$ th approx, --1 st approx, $-2 n d$ approx)

Comparison with simulator (Matsubara, Hikage \& K, 2022)

Simulator (dot) and expansion formulas (solid line) R : Radius of smoothing kernel $\left(h^{-1} \mathrm{Mpc}\right)$ periodical boundary condition $(\partial T=\emptyset)$

Boundary correction

- When the dimension is $n=3$, and $\partial T \neq \emptyset$,

$$
\mathbb{E}\left[\chi\left(T_{v}\right)\right]=\operatorname{Vol}(T) \Xi_{3}(v)+\underbrace{\mathcal{L}_{2}(T) \Xi_{2}(v)+\mathcal{L}_{1}(T) \Xi_{1}(v)+\chi(T) \Xi_{0}(v)}_{\text {boundary correction (contribution of } \partial T)}
$$

- We use the same parameters for $R=20 . T$ is a cubic.

$T=(1000 \mathrm{Mpc})^{3}$

$T=(300 \mathrm{Mpc})^{3}$

$T=(200 \mathrm{Mpc})^{3}$

Orange: $\mathbb{E}\left[\chi\left(T_{x}\right)\right]$ with boundary corrections
Blue: without boundary corrections

Contents of talk

I. MFs for isotropic random fields: The Euclidean space case Matsubara \& K (2021), Matsubara, Hikage \& K (2022), K and Matsubara (2023)
II. MFs for isotropic random fields: The sphere case

Orthogonally invariant random field on the sphere

- In the second half of the talk, we deal with a random field $X(\cdot)$ on the n-dim sphere \mathbb{S}_{R}^{n} with radius R.
- Instead of the isotropy, assume that $X(t)$ is orthogonally invariant: $\forall T^{\prime}$ (finite set) $\subset T$,

$$
\{X(t)\}_{t \in T^{\prime}} \stackrel{d}{=}\{X(P t)\}_{t \in T^{\prime}}, \forall P \in O(n)
$$

- Excursion set is the sup-level set of a function $X(t)$:

$$
T_{v}=\{t \in T \mid X(t) \geq v\}=X^{-1}([v, \infty))
$$

- We consider the MFs of T_{v}. How does R affect?

Covariance and k-point correlation functions

- Distance: For $s, t \in \mathbb{S}_{R}^{n}$,

$$
\operatorname{dist}_{R}(s, t)=\text { the great circle distance between } s \text { and } t
$$

- Covariance:

$$
\begin{aligned}
\operatorname{Cov}(X(s), X(t)) & =\mathrm{A} \text { function of } \operatorname{dist}_{R}(s, t) \\
& =\rho\left(\frac{1}{2} \operatorname{dist}_{R}(s, t)^{2}\right), \text { say }
\end{aligned}
$$

- 3-point correlation function:

$$
\begin{aligned}
& \operatorname{cum}(X(s), X(t), X(u)) \\
& =\kappa^{(3)}\left(\frac{1}{2} \operatorname{dist}_{R}(s, t)^{2}, \frac{1}{2} \operatorname{dist}_{R}(s, u)^{2}, \frac{1}{2} \operatorname{dist}_{R}(t, u)^{2}\right)
\end{aligned}
$$

Great circle distance

$$
x=\frac{1}{2}\|s-t\|^{2}
$$

Extended random field $\widetilde{X}(\cdot)$

- Construct an isotropic random field $\widetilde{X}(\cdot)$ on \mathbb{R}^{n+1} such that its restriction on \mathbb{S}_{R}^{n} satisfies

$$
\left(\left.\widetilde{X}\right|_{\mathbb{S}_{R}^{n}},\left.\nabla \widetilde{X}\right|_{\mathbb{S}_{R}^{n}},\left.\nabla^{2} \widetilde{X}\right|_{\mathbb{S}_{R}^{n}}\right)(t) \stackrel{d}{=}\left(X, \nabla X, \nabla^{2} X\right)(t), \quad t \in \mathbb{S}_{R}^{n}
$$

where ∇ is the gradient on the tangent space $T_{t} \mathbb{S}_{R}^{n}$.

- Noting that
$\operatorname{cum}\left(X\left(t_{1}\right), X\left(t_{2}\right), \ldots\right)=\kappa^{(k)}\left(\frac{1}{2} \operatorname{dist}_{R}\left(t_{1}, t_{2}\right)^{2}, \ldots\right), \quad t_{i} \in \mathbb{S}_{R}^{n}$
we define

$$
\operatorname{cum}\left(\widetilde{X}\left(t_{1}\right), \widetilde{X}\left(t_{2}\right), \ldots\right)=\kappa^{(k)}\left(x_{12}+\frac{1}{6 R^{2}} x_{12}^{2}+\cdots, \ldots\right)
$$

where

$$
x_{i j}=\frac{1}{2}\left\|t_{i}-t_{j}\right\|^{2}, \quad t_{i} \in \mathbb{R}^{n+1}
$$

k-point correlations and there derivatives

- We apply the theorem for the Euclidean space to \widetilde{X} with the index set $T \subset \mathbb{S}_{R}^{n} \subset \mathbb{R}^{n+1}$.
- We evaluate the parameters $\gamma, \kappa_{0}, \kappa_{1}, \ldots, \widetilde{\kappa}_{0}, \ldots$ that construct $\Xi_{d, \nu}(x)$ as

$$
\begin{aligned}
\underset{\text { sphere }}{\gamma} & =\left.\frac{\mathrm{d}}{\mathrm{~d} x} \rho\left(x+\frac{1}{6 R^{2}} x^{2}+\cdots\right)\right|_{x=0}=\rho^{\prime}(0)=\underset{\text { Euclid }}{\gamma} \\
\begin{aligned}
\kappa_{1} \\
\text { sphere }
\end{aligned} & =\left.\frac{\partial}{\partial x_{12}} \kappa^{(3)}\left(x_{12}+\frac{1}{6 R^{2}} x_{12}^{2}+\cdots, 0,0\right)\right|_{x=0} \\
& =\left.\frac{\partial}{\partial x_{12}} \kappa^{(3)}\left(x_{12}, 0,0\right)\right|_{x=0}=\underset{\text { Euclid }}{\kappa_{1}}
\end{aligned}
$$

etc.

- Because the second derivatives do not appear, all of the parameters are equivalent for the Euclidean space case and the sphere case.

Expected MFs: the spherical case

Theorem

The expected MFs for the weakly non-Gaussian orthogonally invariant random field $X(t), t \in T$, on the sphere \mathbb{S}_{R}^{n} are

$$
\begin{aligned}
\mathbb{E}\left[\chi\left(T_{x}\right)\right] & =\mathbb{E}\left[\mathcal{L}_{0}\left(T_{x}\right)\right]=\sum_{d=0}^{n} \mathcal{L}_{d}(T) \Xi_{d, \nu}(x), \\
\mathbb{E}\left[\mathcal{L}_{k}\left(T_{x}\right)\right] & =\sum_{d=0}^{n-k} \frac{\Gamma\left(\frac{k+d+1}{2}\right) \Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{k+1}{2}\right) \Gamma\left(\frac{d+1}{2}\right)} \mathcal{L}_{k+d}(T) \Xi_{d, \nu}(x), \quad k=1, \ldots, n
\end{aligned}
$$

The expression for the EC density $\Xi_{d, \nu}(x)$ is the same as in the Euclidean space case.

Remark

These formulas look exactly the same as in the Euclidean case. However, the T is a subset of the sphere and $\mathcal{L}_{d}(T)$ depends on R, and the definitions of ρ and $\kappa^{(k)}$ constructing $\Xi_{d, \nu}$ are different.

Corollary: $X(\cdot)$ is Gaussian and $T=\mathbb{S}_{R}^{n}$ (the whole sphere)

- Recall that

$$
\mathcal{L}_{j}\left(\mathbb{S}_{R}^{n}\right)= \begin{cases}2 R^{j}\binom{n}{j} \frac{\Omega_{n+1}}{\Omega_{n-j+1}} & (n-j: \text { even }), \quad \Omega_{d}=\frac{2 \pi^{d / 2}}{\Gamma(d / 2)} \\ 0 & (\text { otherwise }),\end{cases}
$$

Corollary

When $X(\cdot)$ is Gaussian and $T=\mathbb{S}_{R}^{n}$ (the whole sphere),

$$
\begin{aligned}
& \mathbb{E}\left[\chi\left(T_{x}\right)\right]=\frac{\left(\gamma R^{2}\right)^{n / 2} \Omega_{n+1}}{(2 \pi)^{n / 2}} \phi(x) H_{n}\left(x ;\left(\gamma R^{2}\right)^{-1}\right), \\
& \text { where } \quad H_{n}(x ; \delta)=\sum_{k=0}^{[n / 2]} \delta^{k / 2} \frac{n!}{2^{k} k!(n-2 k)!} H_{n-2 k-1}(x)
\end{aligned}
$$

(Cheng and Xiao (2016); for $n=2$, Schmalzing and Górski (1998))

An implication: When the random field is observed on the celestial sphere \mathbb{S}_{1}^{2}

- Suppose that $n=2$ and the random field on the sphere \mathbb{S}_{R}^{2} is observed on the celestial sphere \mathbb{S}_{1}^{2} :

$$
\bar{X}(t)=X(R t), \quad t \in \bar{T}=R^{-1} T \subset \mathbb{S}_{1}^{n} \quad \text { (unit sphere) }
$$

- Then, $\mathcal{L}_{j}(T)=R^{j} \mathcal{L}_{j}(\bar{T}), \gamma=\operatorname{Var}\left(\partial X(t) / \partial t^{1}\right)=\bar{\gamma} R^{-1}$ with $\bar{\gamma}=\operatorname{Var}\left(\partial \bar{X}(t) / \partial t^{1}\right)$,

$$
\begin{aligned}
\mathbb{E}\left[\chi\left(\bar{T}_{x}\right)\right]=\mathbb{E}\left[\chi\left(T_{x}\right)\right] & =\sum_{j=0}^{n}(\gamma / 2 \pi)^{j / 2} H_{j-1}(x) \mathcal{L}_{j}(T) \\
& =\sum_{j=0}^{n}(\bar{\gamma} / 2 \pi)^{j / 2} H_{j-1}(x) \mathcal{L}_{j}(\bar{T})
\end{aligned}
$$

No information on R can be extracted from the MFs

- This is the case even when $X(\cdot)$ is weakly non-Gaussian.

Summary

What we have done:

- Expected MFs formulas are provided when the random field $X(\cdot)$ is isotropic (or, orthogonally invariant) and weakly non-Gaussian in the Euclidean space (or, on the sphere, respectively).

Take home messages:

1. The boundary effect of the MF is often substantial and cannot be ignored. The boundary correction is easy and should be incorporated always.
2. The expected MF for the sphere (=space of constant curvature) is almost same as the Euclidean space case.
3. The MFs of the celestial sphere data do not contain the information on the curvature R^{-1}.

References I

1. Chamandy, N., Worsley, K. J., Taylor, J. and Gosselin, F. (2008). Tilted Euler characteristic densities for Central Limit random fields, with application to "bubbles", Ann. Statist., 36 (5), 2471-2507.
2. Cheng, D. and Xiao, Y. (2016). Excursion probability of Gaussian random fields on sphere Bernoulli 22 (2), 1113-1130.
3. Kuriki, S. and Matsubara, T. (2023). Asymptotic expansion of the expected Minkowski functional for isotropic central limit random fields, Advances in Applied Probability, 55 (4) (Dec 2023).
4. Matsubara, T. \& Kuriki, S., Weakly non-Gaussian formula for the Minkowski functionals in general dimensions, Physical Review D, 104, 103522 (Nov 2021).
5. Matsubara, T., Hikage, C. \& Kuriki,S., Minkowski functionals and the nonlinear perturbation theory in the large-scale structure: second-order effects, Physical Review D, 105, 023527 (Jan 2022).

References II

6. Schmalzing, J. and Górski, M. G. (1998). Minkowski functionals used in the morphological analysis of cosmic microwave background anisotropy maps, Mon. Not. R. Astron. Soc., 297, 355-365.
7. Tomita, H. (1986). Curvature invariants of random interface generated by Gaussian fields, Progress of Theoretical Physics, 76 (4), 952-955

Regularity conditions

Assumption
(i) $t \mapsto X_{N}(t)$ is of C^{2} a.s.
(ii) Recall that $t=\left(t^{j}\right)_{1 \leq j \leq n}$. There exists

$$
\frac{\partial^{8} \mathbb{E}\left[X_{N}\left(t_{1}\right) X_{N}\left(t_{2}\right) X_{N}\left(t_{3}\right) X_{N}\left(t_{4}\right)\right]}{\partial t_{1}^{i_{1}} \partial t_{1}^{j_{1}} \cdots \partial t_{4}^{i_{4}} \partial t_{4}^{j_{4}}} \quad \text { around } t_{1}=t_{2}=t_{3}=t_{4}
$$

(iii) For t fixed, $\left(X_{N}(t), \nabla X_{N}(t), \nabla^{2} X_{N}(t)\right)$ has a density p_{N}. p_{N} is bounded for some N. It has a moment of order $\binom{n+2}{2}+1$.

Key identities on the Hermite polynomial

- $A \sim \operatorname{GOE}(n)$, that is, $A=\left(a_{i j}\right) \in \operatorname{Sym}(n), a_{i i} \sim \mathcal{N}(0,2)$,

$$
a_{i j} \sim \mathcal{N}(0,1)(i<j) . \text { Then, } \mathbb{E}\left[e^{\operatorname{tr}(\Theta A)}\right]=e^{\operatorname{tr}\left(\Theta^{2}\right)}
$$

- For $B=\left(b_{i j}\right) \in \operatorname{Sym}(n)$, define a matrix differential operator

$$
\left(D_{B}\right)_{i j}=(1 / 2)\left(1+\delta_{i j}\right)\left(\partial / \partial b_{i j}\right) \quad(i \leq j)
$$

Lemma

Let $A \sim \operatorname{GOE}(n)$. Let $m=\sum_{i=1}^{\ell} c_{i}$. Then,

$$
\begin{array}{r}
(-1 / 2)^{m-\ell}(n)_{m} H_{n-m}(x)=\mathbb{E}\left[\operatorname{tr}\left(D_{A}^{c_{1}}\right) \cdots \operatorname{tr}\left(D_{A}^{c_{\ell}}\right) \operatorname{det}\left(x I_{n}+A\right)\right] \\
=\left.\operatorname{det}\left(x I+D_{\Theta}\right)\left(e^{\operatorname{tr}\left(\Theta^{2}\right)} \operatorname{tr}\left(\Theta^{c_{1}}\right) \cdots \operatorname{tr}\left(\Theta^{c_{\ell}}\right)\right)\right|_{\Theta=0}
\end{array}
$$

In particular, when $\ell=m=0$,

$$
H_{n}(x)=\mathbb{E}\left[\operatorname{det}\left(x I_{n}+A\right)\right]=\left.\operatorname{det}\left(x I_{n}+D_{\Theta}\right) e^{\operatorname{tr}\left(\Theta^{2}\right)}\right|_{\Theta=0}
$$

