
Minkowski functionals for isotropic random

fields in the Euclidean space and the sphere

Kuriki, Satoshi
Inst. Statist. Math. (ISM) and SOKENDAI

Statistical Analysis of Random Fields in Cosmology

KEK-Cosmo 2024, Mon 4 March 2024

Joint work with T. Matsubara and C. Hikage

1 / 26



Contents of talk

I. MFs for isotropic random fields: The Euclidean space case

Matsubara & K (2021), Matsubara, Hikage & K (2022),

K and Matsubara (2023)

II. MFs for isotropic random fields: The sphere case

2 / 26



Contents of talk

I. MFs for isotropic random fields: The Euclidean space case

Matsubara & K (2021), Matsubara, Hikage & K (2022),

K and Matsubara (2023)

II. MFs for isotropic random fields: The sphere case

2 / 26



Excursion set for a smooth isotropic random field

I Isotropic random field X(t), t ∈ T ⊂ Rn:

∀T ′(finite set) ⊂ T ,{
X(t)

}
t∈T ′

d
=
{
X(Pt+ b)

}
t∈T ′ , ∀(P, b) ∈ O(n)× Rn

I Excursion set is the sup-level set of a function X(t):

Tv = {t ∈ T | X(t) ≥ v} = X−1([v,∞))

Left: Isotropic random field, Right: Its excursion set
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Minkowski functional (MF) and Lipschitz-Killing curvature

I Let M ⊂ Rn be a closed set. Tube about M with radius ρ:

Tube(M,ρ) =
{
x ∈ Rn | dist(x,M) ≤ ρ

}

I Definitions of Minkowski functional Vj(·) and Lipschitz-Killing

curvature Lj(·):

For small ρ > 0, and ωd = πd/2/Γ(d/2 + 1),

Voln(Tube(M,ρ)) =

n∑
j=0

ωn−jρ
n−jLj(M) =

n∑
j=0

ρj
(
n

j

)
Vj(M)

(Lj(·) is defined independently of the ambient space)

4 / 26



When the dimension n is 2

I When n = 2,

L2(M) =V0(M) =

∫
M

dx = Area(M)

L1(M) =V1(M) =
1

2

∫
∂M

dx =
1

2
Length(∂M)

L0(M) =
1

π
V2(M) = χ(M) (Euler characteristics)

I For general n and i, Li(M) is represented as an integral of

the curvature measure over ∂M .
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MF of the excursion set Tv as a goodness-of-fit statistic

I The Minkowski functional Vj(Tv) of the excursion set Tv can

be used as a statistic for testing goodness-of-fit

(e.g., applications in cosmology)

v

Gaussian

v

non-Gaussian

— observed Euler characteristic χ(Tv)

— E[χ(Tv)] under the assumption of Gaussianity

I Our purpose: To obtain the formulas E[χ(Tv)] (and E[Lk(Tv)])

under non-Gaussian distributions
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Kinematic Formula for isotropic random fields

Fact (Kinematic Formula in Rn)

For A,B ⊂ Rn and for gB = {Px+ b |x ∈ B} (g: rigid motion),∫
χ(A ∩ gB)dg ∝

n∑
d=0

Ld(A)Ln−d(B).

I Let A := T , gB := {t ∈ Rn |X(t) ≥ x}, then A ∩ gB = Tx.

Proposition (Kinematic Formula for isotropic random fields)

When X(t), t ∈ T , is a smooth isotropic random field,

E[χ(Tx)] =E[L0(Tx)] =

n∑
d=0

Ld(T ) Ξd(x),

where Ξd(x) is the Euler characteristic density.
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E[Lk(Tx)] for k ≥ 1

I Expected MF except for k ≥ 1:

E[Lk(Tx)] =

n−k∑
d=0

Γ(k+d+1
2 )Γ(1

2)

Γ(k+1
2 )Γ(d+1

2 )
Lk+d(T ) Ξd(x), k = 1, . . . , n

I We only need to know the Euler characteristic density Ξd(x).
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EC density for the Gaussian random field

Proposition (Tomita, 1986, PTP, and many)

Suppose that Var(∇X(t)) = γI. When X(t) is Gaussian,

Ξd(x) = (γ/2π)d/2φ(x)Hd−1(x)

where φ(x): pdf of N (0, 1), Hj(x): Hermite polynomial

I Therefore,

E[χ(Tx)] =

n∑
d=0

Ld(T ) (γ/2π)d/2φ(x)Hd−1(x)

I When X(t) is not Gaussian?
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Weakly non-Gaussian case

I The non-Gaussianity is characterized by k-point correlation

functions (k-th cumulant). In the applications to cosmology,

cum(X(t1), . . . , X(tk)) = O(νk−2), ν � 1

I e.g., Central limit random fields by Chamandy, et al. (2008):

X(t) = 1√
N

∑N
i=1 Z(i)(t), ν = 1/

√
N.

Z(i): zero mean i.i.d. isotropic non-Gaussian random field.

I The k-point correlation function for the isotropic random field:

cum(X(t1), . . . , X(tk))

= νk−2κ(k)(1
2‖t1 − t2‖

2, 1
2‖t1 − t3‖

2, . . . , 1
2‖tk−1 − tk‖2)

(A function of pairwise distances between t1, . . . , tk)
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Asymptotic expansion of the Euler density I

Theorem
Under regularity conditions, as ν → 0 uniformly in x,

Ξd,ν(x) =
( γ

2π

)d/2
φ(x)

(
Hd−1(x)+ν∆1,d(x)+ν2∆2,d(x)

)
+o(ν−2)

where

∆1,d(x) = 1
2γ2

κ11(d)2Hd−2(x)− 1
2γκ1dHd(x) + 1

6κ0Hd+2(x)

κ0 = κ(3)(0, 0, 0), κ1 = dκ(3)(x,0,0)
dx |x=0, κ11 = d2κ(3)(x,y,0)

dxdy |x=y=0
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Asymptotic expansion of the Euler density II

and

∆2,d(x) =
(
− 1

6γ3
(3κ̃a111 + κ̃d111) + 1

8γ4
(d− 7)κ2

11

)
(d)3Hd−3(x)

+
(

1
8γ2

(κ̃aa11(d− 2) + 4κ̃a11(d− 1)

− 1
4γ3

κ1κ11(d− 1)(d− 4)
)
dHd−1(x)

+
(
− 1

4γ κ̃1 + 1
24γ2

(3κ2
1(d− 2) + 2κ0κ11(d− 1))

)
dHd+1(x)

+
(

1
24 κ̃0 − 1

12γκ0κ1d
)
Hd+3(x) + 1

72κ
2
0Hd+5(x)

κ̃0 = κ(4)(0, 0, 0, 0, 0, 0), κ̃1 = dκ(4)(x1,0,0,0,0,0)
dx1

|x1=0, . . .
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Sketch of the proof

I Kac-Rice formula (Morse theory) for the EC density:

Ξd(v) = E[χ(Tv)] = E[1(X(t) ≥ v) det(−∇2X(t))δ(∇X(t))]

(∗)
Ξd(v) is independent of t (because X is isotropic).

I Obtain the Edgeworth expansion of the pdf (or mgf) of

(X(t),∇X(t),∇2X(t)) ∈ R1+d+d(d+1)/2

and evaluate Ξd(v) by (∗).
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(Non)Detectable non-Gaussianity

I Diagram of the derivatives:

∂

∂x12

∂

∂x13

∂

∂x14

∂

∂x45

∂

∂x46
κ(6)(x12, . . . , x56)

∣∣∣
x=0

5

63 41

2

∂

∂x12

∂

∂x13

∂

∂x14

∂

∂x23

∂

∂x45

∂

∂x46
κ(6)(x12, . . . , x56)

∣∣∣
x=0

5

63 41

2

Theorem
The derivatives with loops do not appear in the formula for Ξd(v).

I In particular, the second derivatives don’t appear

( ∂

∂x12

)2 ∂

∂x23
κ(3)(x12, x13, x23)

∣∣∣
x=0

1 2 3
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Chi-square random field

I A weakly non-Gaussian random field when d.f. is large:

Y (t) = YN (t) =
1√
2N

N∑
i=1

(
Z(i)(t)

2 − 1
)
, t ∈ T ⊂ R4,

Z(i)(t): zero mean Gaussian s.t. E[Z(i)(s)Z(i)(t)] = e−
1
4
‖s−t‖2 ,

i = 1, 2, . . . i.i.d.

I The EC density for Y (t) is known:

1 2 3 4 5

-0.5

-0.4

-0.3

-0.2

-0.1

0.1

EC density, N = 100 (– · – true, · · · 0th

approx, – –1st approx, —2nd approx)

1 2 3 4 5

-0.03

-0.02

-0.01

0.01

0.02

Difference from the true, N = 100

(· · · 0th approx, – –1st approx, —2nd

approx)
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Comparison with simulator (Matsubara, Hikage & K, 2022)

V0

V1

V2

V3

R=10 R=20 R=30 R=40

Simulator (dot) and expansion formulas (solid line)

R: Radius of smoothing kernel (h−1Mpc)

periodical boundary condition (∂T = ∅)
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Boundary correction

I When the dimension is n = 3, and ∂T 6= ∅,

E[χ(Tv)] =Vol(T )Ξ3(v) + L2(T )Ξ2(v) + L1(T )Ξ1(v) + χ(T )Ξ0(v)︸ ︷︷ ︸
boundary correction (contribution of ∂T )

I We use the same parameters for R = 20. T is a cubic.

-4 -2 2 4

-600

-400

-200

200

-4 -2 2 4

-20

-15

-10

-5

5

10

-4 -2 2 4

-6

-4

-2

2

4

T = (1000Mpc)3 T = (300Mpc)3 T = (200Mpc)3

Orange : E[χ(Tx)] with boundary corrections

Blue : without boundary corrections
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Orthogonally invariant random field on the sphere

I In the second half of the talk, we deal with a random field

X(·) on the n-dim sphere SnR with radius R.

I Instead of the isotropy, assume that X(t) is orthogonally

invariant: ∀T ′(finite set) ⊂ T ,{
X(t)

}
t∈T ′

d
=
{
X(Pt)

}
t∈T ′ , ∀P ∈ O(n)

I Excursion set is the sup-level set of a function X(t):

Tv = {t ∈ T | X(t) ≥ v} = X−1([v,∞))

I We consider the MFs of Tv. How does R affect?
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Covariance and k-point correlation functions

I Distance: For s, t ∈ SnR,

distR(s, t) = the great circle distance between s and t

I Covariance:

Cov(X(s), X(t)) = A function of distR(s, t)

=ρ
(

1
2distR(s, t)2

)
, say,

I 3-point correlation function:

cum(X(s), X(t), X(u))

= κ(3)
(

1
2distR(s, t)2, 1

2distR(s, u)2, 1
2distR(t, u)2

)
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Great circle distance

s

t

R

θ
R

dist(s,t )

θ

1
2‖s− t‖ = R sin θ = R sin( 1

2Rdist(s, t))

or

1
2dist(s, t)2 = x+ 1

6R2x
2 + · · ·

where

x = 1
2‖s− t‖

2
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Extended random field X̃(·)

I Construct an isotropic random field X̃(·) on Rn+1 such that

its restriction on SnR satisfies

(X̃|SnR ,∇X̃|SnR ,∇
2X̃|SnR)(t)

d
=(X,∇X,∇2X)(t), t ∈ SnR

where ∇ is the gradient on the tangent space TtSnR.
I Noting that

cum(X(t1), X(t2), . . .) = κ(k)
(

1
2distR(t1, t2)2, . . .

)
, ti ∈ SnR

we define

cum
(
X̃(t1), X̃(t2), . . .

)
= κ(k)

(
x12 + 1

6R2x
2
12 + · · · , . . .

)
where

xij = 1
2‖ti − tj‖

2, ti ∈ Rn+1
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k-point correlations and there derivatives

I We apply the theorem for the Euclidean space to X̃ with the

index set T ⊂ SnR ⊂ Rn+1.

I We evaluate the parameters γ, κ0, κ1, . . ., κ̃0, . . . that

construct Ξd,ν(x) as

γ
sphere

=
d

dx
ρ(x+ 1

6R2x
2 + · · · )

∣∣
x=0

= ρ′(0) = γ
Euclid

κ1
sphere

=
∂

∂x12
κ(3)(x12 + 1

6R2x
2
12 + · · · , 0, 0)

∣∣
x=0

=
∂

∂x12
κ(3)(x12, 0, 0)

∣∣
x=0

= κ1
Euclid

etc.

I Because the second derivatives do not appear, all of the

parameters are equivalent for the Euclidean space case and

the sphere case.
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Expected MFs: the spherical case

Theorem
The expected MFs for the weakly non-Gaussian orthogonally

invariant random field X(t), t ∈ T , on the sphere SnR are

E[χ(Tx)] =E[L0(Tx)] =

n∑
d=0

Ld(T ) Ξd,ν(x),

E[Lk(Tx)] =
n−k∑
d=0

Γ(k+d+1
2 )Γ(1

2)

Γ(k+1
2 )Γ(d+1

2 )
Lk+d(T ) Ξd,ν(x), k = 1, . . . , n

The expression for the EC density Ξd,ν(x) is the same as in the

Euclidean space case.

Remark
These formulas look exactly the same as in the Euclidean case.

However, the T is a subset of the sphere and Ld(T ) depends on R,

and the definitions of ρ and κ(k) constructing Ξd,ν are different. 23 / 26



Corollary: X(·) is Gaussian and T = SnR (the whole sphere)

I Recall that

Lj(SnR) =

2Rj
(
n
j

) Ωn+1

Ωn−j+1
(n− j : even),

0 (otherwise),
Ωd =

2πd/2

Γ(d/2)

Corollary

When X(·) is Gaussian and T = SnR (the whole sphere),

E[χ(Tx)] =
(γR2)n/2Ωn+1

(2π)n/2
φ(x)Hn(x; (γR2)−1),

where Hn(x; δ) =

[n/2]∑
k=0

δk/2
n!

2kk!(n− 2k)!
Hn−2k−1(x)

(Cheng and Xiao (2016); for n = 2, Schmalzing and Górski (1998))
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An implication: When the random field is observed on the
celestial sphere S2

1

I Suppose that n = 2 and the random field on the sphere S2
R is

observed on the celestial sphere S2
1:

X(t) = X(Rt), t ∈ T = R−1T ⊂ Sn1 (unit sphere)

I Then, Lj(T ) = RjLj(T ), γ = Var(∂X(t)/∂t1) = γR−1 with

γ = Var(∂X(t)/∂t1),

E[χ(T x)] = E[χ(Tx)] =
n∑
j=0

(γ/2π)j/2Hj−1(x)Lj(T )

=

n∑
j=0

(γ/2π)j/2Hj−1(x)Lj(T )

No information on R can be extracted from the MFs
I This is the case even when X(·) is weakly non-Gaussian.
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Summary

What we have done:

I Expected MFs formulas are provided when the random field

X(·) is isotropic (or, orthogonally invariant) and weakly

non-Gaussian in the Euclidean space (or, on the sphere,

respectively).

Take home messages:

1. The boundary effect of the MF is often substantial and cannot

be ignored. The boundary correction is easy and should be

incorporated always.

2. The expected MF for the sphere (=space of constant

curvature) is almost same as the Euclidean space case.

3. The MFs of the celestial sphere data do not contain the

information on the curvature R−1.
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Regularity conditions

Assumption

(i) t 7→ XN (t) is of C2 a.s.

(ii) Recall that t = (tj)1≤j≤n. There exists

∂8E
[
XN (t1)XN (t2)XN (t3)XN (t4)

]
∂ti11 ∂t

j1
1 · · · ∂t

i4
4 ∂t

j4
4

around t1 = t2 = t3 = t4

(iii) For t fixed, (XN (t),∇XN (t),∇2XN (t)) has a density pN . pN
is bounded for some N . It has a moment of order

(
n+2

2

)
+ 1.
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Key identities on the Hermite polynomial

I A ∼ GOE(n), that is, A = (aij) ∈ Sym(n), aii ∼ N (0, 2),

aij ∼ N (0, 1) (i < j). Then, E[etr(ΘA)] = etr(Θ2)

I For B = (bij) ∈ Sym(n), define a matrix differential operator

(DB)ij = (1/2)(1 + δij)(∂/∂bij) (i ≤ j)

Lemma
Let A ∼ GOE(n). Let m =

∑`
i=1 ci. Then,

(−1/2)m−`(n)mHn−m(x) = E
[
tr(Dc1

A ) · · · tr(Dc`
A ) det(xIn +A)

]
= det(xI +DΘ)

(
etr(Θ2)tr(Θc1) · · · tr(Θc`)

)∣∣∣
Θ=0

In particular, when ` = m = 0,

Hn(x) = E[det(xIn +A)] = det(xIn +DΘ)etr(Θ2)
∣∣∣
Θ=0
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