Target of the workshop

Hiroshi Kawata

Innovation Center for Applied Superconducting Accelerator, (iCASA), High Energy Accelerator Research Organization (KEK).

Key word of the target on the previous workshop

Challenges for future lithography (from the report of IRDS)

https://irds.ieee.org/editions/2022/irds%E2%84%A2-2022-lithography

Table LITH-4 The Key Challenges of High-NA EUV Lithograp	phy	Table LITH	I- 2	Potentia	al Solutions	s for Leadir	ng-Edge Lo	gic Lithogr	raph
Key challenges	- 11		2022	2025	2028	2031	2034	2037	1
Resists meeting resolution requirements, with low levels of defects from stochastic phenomena and pattern collapse		Logic node	3 nm	2.1 nm	1.5 nm	1.0 nm	0.7 nm	0.5 nm	
Light courses that an summert photon shot poice and productivity	- 11	Node	G48M24	G45M20	G42M16	G40M16T2	G38M16T4	G38M16T6	
Light sources that can support photon shot noise and productivity requirements		Minimum ½-pitch	12 nm	10	8 nm	8 nm	8 nm	8 nm	
Solutions for meeting small depths-of-focus at 0.55 NA				EUV 0.33.NA	EUV 0.55.NA	EUV 0.55.NA	EUV 0.55.NA	EUV 0.55.NA	N
Polarization control for maintaining high contrast at 0.55 NA				multiple	single	single	single	single	
Computational lithography capabilities				patterning EUV	patterning EUV	patterning EUV	patterning EUV	patterning EUV	J
Mask making and metrology infrastructure		Primary options for logic	multiple patterning	cingle	multiple	multiple	multiple	0.55.NA multiple	
Solutions for large dies									;
Cost of high-NA EUV lithography									
						Beyond EUVL	Beyond EUVL	Beyond EUVL	N
Seyond EUV -> wavelength tunability							(λ=6.X nm)		J
o avoid stochastics -> Higher-power olarization control		Potential solutions		Optical +					
Cost reduction for exposure system		for cost reduction,		DSA	DSA	DSA	DSA	DSA	

reduction

EUV + DSA EUV + DSA EUV + DSA EUV + DSA

The target of the present Workshop

- It is an essential point to hear an end user's demands and visions.
- →Keynote lecture by Dr. Kazunari Ishimaru (Rapidus Corporation)
 "The Future of Semiconductor Manufacturing: New Developments in Speed and Innovation"
- How is the present status about the development for high power EUV sources in a world?
- ➔ Invited talks by Dr. Erik R. Hosler (xLight,Inc.), Prof. Shinichiro Michizono (KEK) for accelerator based light sources and Prof. Hakaru Mizoguchi et.al. (Kyushu University) for upgraded LPP light source.
- Is there any Issues by using EUV-FEL, even though the EUV-FEL has a satisfactory performance for the key words at the previous workshop?
- → Invited talks by Dr. Dr. Patrick P. Naulleau (EUV Tech Inc. ,and LBNL) for coherence reduction and Dr. Hisataka Takenaka (TOYAMA Co., Ltd.) for multilayer mirrors for BEUV lithography.

We hope that you will understand much more deeply about the solutions and/or issues for the above items in this workshop.