Model-independence in machine-learning-based mass reconstruction for inclusive multi-jet search

Takane Sano¹, Javier Montejo Berlingen², Kunihiro Nagano³

Machine Learning at HEP, 10th Jan 2024

¹Kyoto University. ²The Barcelona Institute of Science and Technology, ³High Energy Accelerator Research Organization (JP)

Inclusive multi-jet search

Multi-jet final state

- Final state with multiple quarks
- Can be a portal to variety
- Especially decays only w covered

- **Example: RPV SUSY**
- Don't limi⁻
 - Pair prc
 - Both de
- Can even cover some

Other RPV analyses, not related

2

Strategy for inclusive search

- Bump hunting on mass spectrum with the help of weakly-supervised ML
 - Fully data driven
 - CWoLa [arXiv:1708.02949], CATHODE [arXiv:2109.00546], CURTAINs \bullet [<u>arXiv:2203.09470</u>], etc.
 - Data driven weak supervision
 - Pick a data event from either SB (Side band) / SR (Signal region)
 - Train SB / SR classifier f (not signal/background) lacksquare
 - $f(event) \mapsto SB \text{ or } SR$
 - Magically, optimal f is equivalent to optimal signal / background classifier!
 - Use trained f to enhance significance \rightarrow Do bump hunt on top of that
- Requirement: signal needs to be localized
 - Challenge: Model-independent sharp reconstructed mass

Reconstruction of multi-jet events

Today's main topic

Jets - source particle matching

- To reconstruct the mass, we need the correct combination of jets to build each of the two source particles
- Source particles are the same kind of particle
 Make two groups of jets so that they looks alike
- Some jets may come outside of the decay
 One additional group (garbage group)
- Develop jets grouping method based on ML
 - Challenge: Model independence

Training sample dependence: mass dependence

Mass dependence

- When trained on single mass...
 - Cannot reconstruct mass higher than the given mass
- What if adding other mass in the training?
 - Mixing two masses in the training and test on unknown mass
 - \rightarrow Now NN can reconstruct masses higher than the given mass!
- Just adjusting training sample composition can help mass-independence
 - Single mass
 - -> Learns the mass
 - Mixed mass -> Learns to make two similar groups of jets

Training sample dependence: background sculpting

Background sculpting

- NN is trained to reconstruct high mass signals -> Tends to reconstruct backgrounds in high mass

Can composition adjusting useful in this case too?

- \rightarrow Yes!
- Mixing background in the training sample
- → NN learns low mass background

Relative signal position

Aim to compare signal shape on the same background distribution

Adding backgrounds to training samples with training weights

- Relative signal position goes to the right side as the background weight increases
- \rightarrow Increasing backgrounds' importance in the training effectively improves the background sculpting

Concept of relative signal position

Training sample dependence: number of jets dependence

Number of jets dependence

- Number of jets differs based on decay mode
- When an event doesn't have enough jets, last parts of the input are masked
- \rightarrow NN learns not to use trailing jets in the reconstruction
- **Permutation equivariance**
 - Jet grouping should not depend on jets' order
 - When swap two jets, the output label should be swapped too
 - Permutation equivariant linear transformation can be constructed with per-jet transformation + pooling
 - Replace all dense layer with permutation equivariant layer -> Permutation equivariant (and cannot learn jet order) by structure

Loss function definition

- Loss function
 - Output of the NN: 3-category label × 12 jets -
 - Label based loss
 - Focus on labeling accuracy: Cross-entropy loss
 - Mass based loss
 - Focus on the difference between reconstructed mass and true mass
 - Utilize Gumbel-softmax function for differentiable ulletreconstruction
- Label based v.s. mass based
 - Labeling accuracy \rightarrow label based works better
 - Reconstructed mass quality
 - Mass based works better
 - With label based, mass quality gets worse as the loss ulletdecreases (the training progresses)

Result - reconstruction characteristics

- Characteristics evaluation
 - Evaluate two aspects: background sculpting(AUC) and peak quality
 - Reconstruct signals which is not known in the training

Compare different settings, including non-ML method

- Six different ML setting
 - Two losses: label based loss, mass based loss
 - Three sample composition: single signal, mixed signal, signals + background
- Three non-ML method

► Result

- Label based (filled circle) v.s. mass based (empty circles) -> Mass based outperforms in both aspects, bkg sculpting and peak quality
- Single signal v.s. mixed signal v.s. signal+background
 - We can see the effects
 - Mixing different signals enhances peak quality
 - Adding background mitigates background sculpting
- Mass based with signal+background outperforms all

Summary / future challenges

- Summary
 - **Bump hunt with weakly supervised ML** → Need narrow mass peak as well as model-independence
 - Model-independence in ML based reconstruction
 - Although it is simple, training sample adjustment helps a lot
 - Mass dependence, background sculpting, decay mode dependence lacksquare
 - For the dependence which cannot be dealt with sample adjustment, modify architecture
 - Mass based loss improves the performance compared to cross-entropy loss
- Challenges
 - How to check model-independence systematically?
 - Currently, exclude one decay mode from the training and test the performance on it
 - Can we use ML to evaluate generalness of the method? \rightarrow Some sort of anomaly detection on "functions' behavior"...?

10

Backup

11