Pre-training strategy using real particle collision data for event classification in collider physics

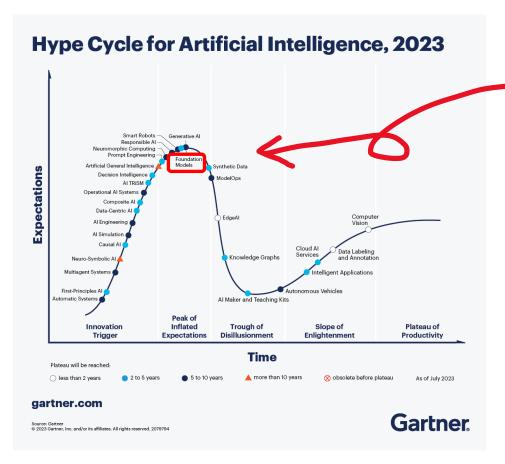
Tomoe Kishimoto

Computing Research Center, KEK

tomoe.kishimoto@kek.jp

Ref: arXiv:2312.06909

Introduction

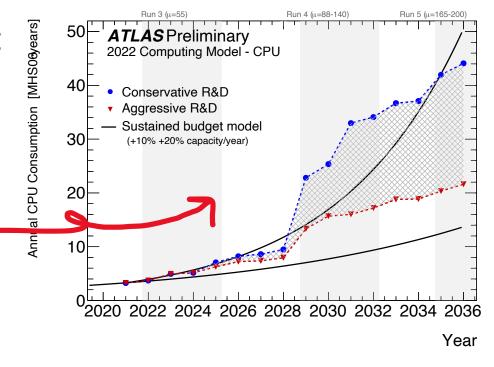


- "Foundation models" was one of the keywords for AI technology in 2023
 - Pre-training using a large amount of unlabeled data
 - Fine-tuning for a target application (transfer learning)
- → Q: Is the concept of foundation models beneficial to collider physics

Gartner.com

Sustainability

- Deep Learning (DL) requires a large amount of training data
 - ➤ In HEP, training data are typically generated by Monte Carlo (MC) simulations
 - ← Computationally expensive
- Electric power consumption, Green computing



→ Maximizing DL performance with a limited amount of data is a key concept

Use case of physics analysis

- Many analysis channels in collider physics
 - > Higgs, Exotic, SUSY, etc
 - Currently, dedicated DL models are trained from scratch for each channel
 - ← Large amount of training data (MC) for each channel

Higgs analysis Target model **Transfer Pre-training Exotic analysis** Source model Target model (Foundation model) Large amount of data **SUSY** analysis Target model Small amount of data

→ If transfer learning can be applied to different analysis channels, computing resources for MC simulations and DL training are saved

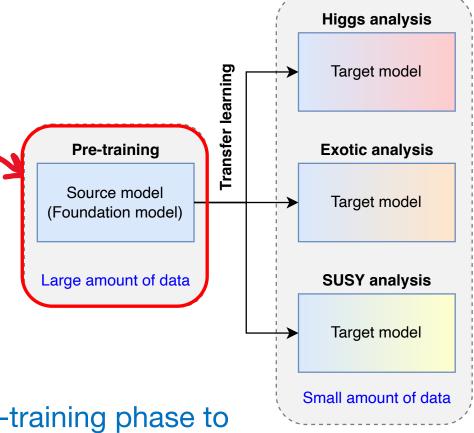
Limitation of idea

 Large amount of MC simulations is still required for the pre-training phase

2. Choice of physics process of MC simulations is arbitrary

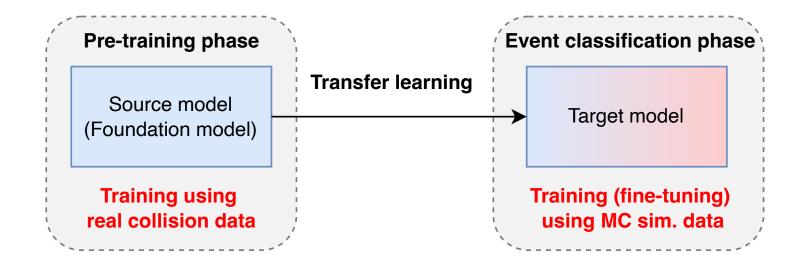
Transfer learning shows better performance between similar physics processes (Ref: PoS(ISGC2022)016)

→ Real particle collision data are used in the pre-training phase to overcome these limitations



Event classification

- > The concept was examined using "event classification" problem
 - > A typical problem in HEP, signal event vs. background event

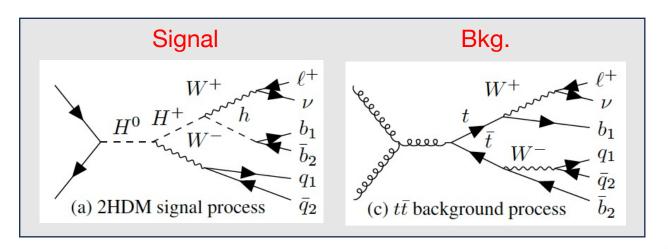


→ Event classification performance (AUC) is compared with and without the pre-training phase

Datasets

- Pre-training phase:
 - > CMS 13TeV opendata

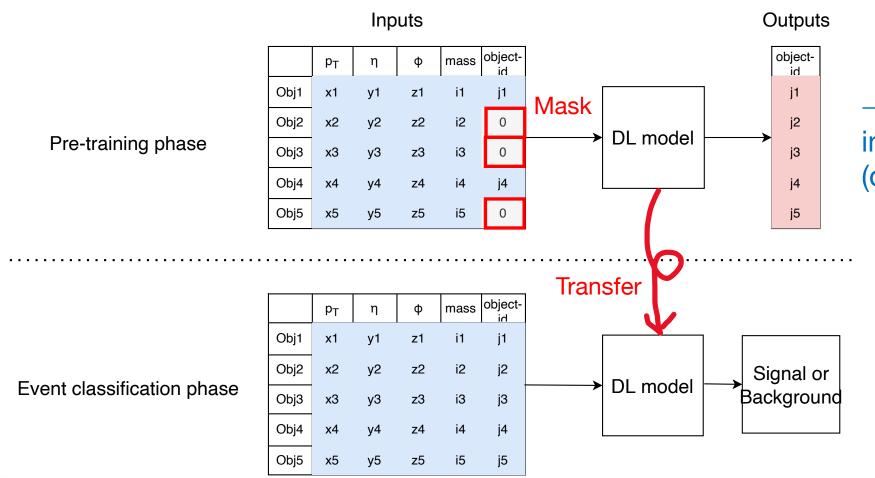
- > Pre-selection: (at least 1 lepton) + (at least 2 b-jets) + (at least 2 light-jets)
- > ~ 1M events are available after the pre-selection
- > Event classification phase:
 - > 2HDM vs. ttbar
 - Madgraph + Pythia8 + Delphes (CMS card)



Pre-training strategy

- > Only low-level features of each object (4-vector, object-id) are used as inputs
- > Self-supervised learning is employed to handle the unlabeled real data
- Strategy:
 - Object-id (lepton, b-jet, light-jet, or MET) is randomly masked by zeros when preparing a mini-batch
 - → DL model is trained to predict masked object-ids as a multi-label classification
 - > All input features, including object-id, are used in the target event classification

Pre-training strategy

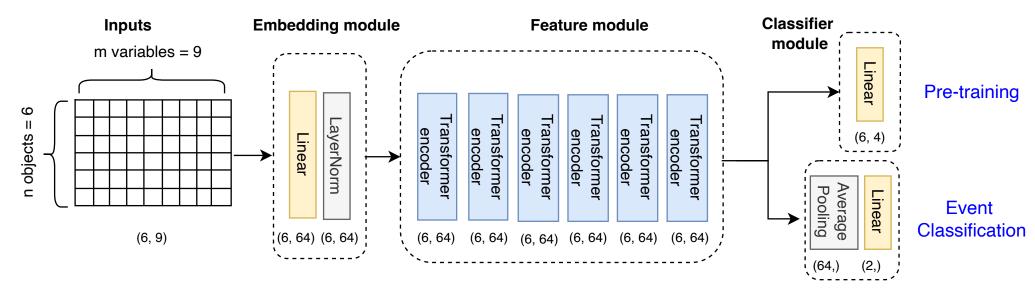


→ Random masks
increase prediction pattern
(data augmentation)

加速器だから見える世界。

DL model

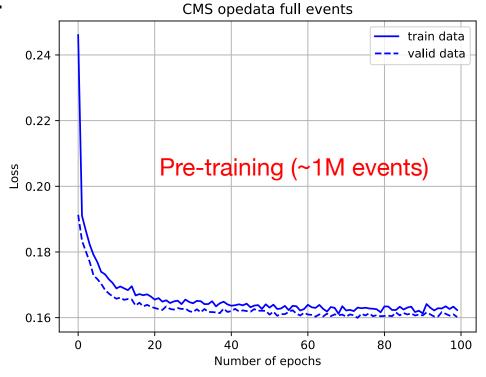
- > Transformer encoder is employed:
 - > ~1.7M trainable parameters



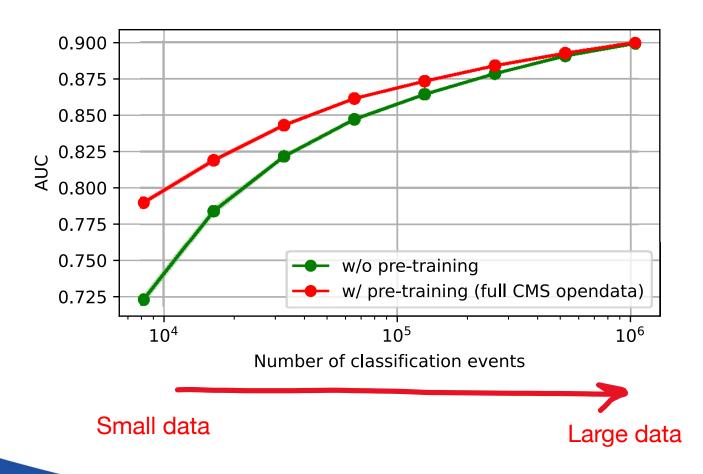
- → Weight parameters of embedding and feature modules are transferred and fine-tuned
- → Classifier module is always trained from scratch

Training details

- ➤ Basically, the same setting between the pretraining and event classification phases:
 - SGD optimizer:
 - ➤ Learning rate: 10⁻²-10⁻⁴ (CosineAnnealingLR)
 - Batch size: 1024, Epochs: 100
 - Cross entropy loss:
 - Pre-training: lepton, b-jet, l-jet, or MET
 - > Event classification: 2HDM or ttbar
- > NVIDIA A100: ~90 batches/s

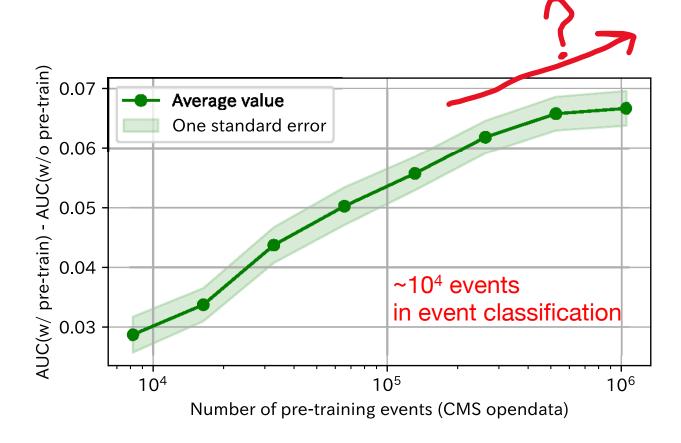


AUC of event classification



- ➤ Significant improvement when # of events in event classification is small (~10⁴)
 - Performances converged when # of events increased to ~10⁶
- ← Expected behavior of the transfer learning

Scaling raw



- Currently, event classification performance improves by increasing events in the pretraining phase
- One training with 10¹⁰ events will require (A100 x 8) x 15 days)

Limitations of our experiments

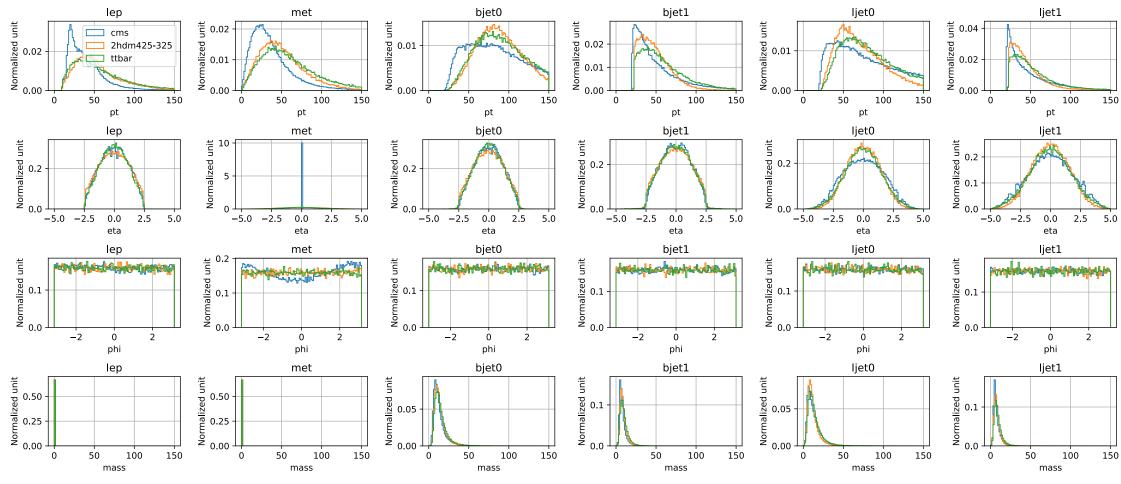
- > The scaling behavior encourages a pre-training with a larger data
 - > However, the number of events in the CMS open data itself is limited
 - → Discussions with ATLAS colleagues are ongoing

- ➤ We should adapt the pre-trained model to different signal events to evaluate the generalization of the model
- We also need to evaluate the foundation model's impact on reducing computing costs

Summary

- Focusing on transfer learning techniques and studying their applications to collider physics
 - Motivated by reduction of computing resources for future experiments
- ➤ Transfer learning: Self-supervised learning using real data → Event classification
 - Significant improvements when the # of events in event classification is small
 - > The scaling behavior encourages pre-training with a larger data

Input variables



2023/9/15