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Machine Learning in
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Tau particle decay

B Belle |l experiment is also Tau factory and Tau is very important for physical analysis

B Focusonthe e et - 771t event

1 charged particle =
T —e VeV , T U V, Vg
- +
_ T_ N T[_'VT ’ T_ N T[_T[O'VT etC (24 ﬁ%ﬁ e

3 charged particles Tt
/

T ontn v, T ot %, etc

S—

— The total number of charged particles must be an even number.

2 charged particles : 72% 4 charged particles : 25% % fewer tracks]

B Electromagnetic calorimeter (ECL) is mainly used to select tau decay events.



Electromagnetic calorimeter (ECL)

Backward Endcap ‘ Barrel | | Forward Endcap

+ Combination of Thallium doped Cesium lodide

W
scintillator and photodiode /

Measurable Information

- Energy loss of particles / ;
- Position where the particle passed Y
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- 4x4=106 crystals are combined as a "trigger Cell'\
for hardware trigger purpose |

Shower
~ distribution

- The entire trigger cells triggered
by a single particle is called a "cluster"




Hardware trigger system

B Select events to reduce DAQ readout rate and data volume
B Total latency must be below 4.4 us — Online data processing using FPGA

ECL 20 >
G .
CDC 0 | R Final S Igsue
L decision trigger
KLM 2 >

GRL (Global Reconstruction Logic)
- Combine information from each detector to identify particles, etc.

. Limitation Trigger rate of ECL < 15kHz
Latency < 500 ns




Motivation and purpose of this research

B Tau generate fewer daughter particles than B mesons and are difficult to trigger.
— Current trigger for tau particle decay is susceptible to background events (~1kHz)

~ Challenge N —Z
When luminosity improves in the future, Main component is
trigger rate will reach the limit of 15kHz beam background .

. J/ from beam pipe

~<__—focus on machine learning near the detector.

Purpose of this research

Make low rate and high purity

hardware trigger less than 15kHz at

Trigger rate Instantaneous luminosity

35 —2.—1
Develop a new tau decay event 6.0x10"cm™"s

trigger using neural network Latency below 500 ns
and implement it in GRL Resource  Fits inside GRL's FPGA



Convert neural network to hardware

B his4dml (high level synthesis for machine learning)
automatically converts Python machine learning models to FPGA firmware

Building and training Convert to Create |IP core by HLS
models with Python HLS project (C++) and Implement on FPGA

_> Vivado™ HLS

Keras = his 4 ml p

~

Easy to use with

Quantization: Quantize weight and bias values
famous open source

"1 Parallelization: Perform multiple calculations
simultaneously within FPGA

\ Adjustable to suit resource and latency demands/

} ’. Can be converted in minutes to hours




Neural network model and training data
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*Information of up to 6 clusters
is sent from ECL.
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B Dataset : Analyze experimental data and adding flags

__Name | Detal | Flag | Training data | Test data_

Tau.d.e cay Iikg S, seleqted ] 280k events 70k events
by initial offline event tagging

All others triggered by the 0 280k events 70k events
current hardware trigger 8
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Signal

Background



Neural network output

Output when inputting test data

104_

103_

Background
Signal

< During physics data taking, we set a

threshold value on the output to decide

I whether to issue a trigger or not.

0.0 0.2 0.4 0.6 0.8 1.0

output of Sigmoid

Efficiency can be easily changed by moving the threshold
— Much more flexible and adjustable than cut-based trigger logic



Performance evaluation

ROC curve

Signal Efficiency (TPR)

0.925
—  neural network AUC=0.95

0.900- high-energy

B Main existing ECL trigger used for tau decay

Total energy > 1 GeV

high-energy oo eliminating Bhabha scattering

~

= ratio of tau events that were correctly determined

- Vertical axis : Signal Efficiency

- Horizontal axis : Background Efficiency

= ratio of background events that were incorrectly
determined to be tau events )

.04 0.06 .08 010 0.12 0.14 0.16
BackPround Efficiency (FPR)

Neural network can reduce background

Expected to be about 9kHz (<15kHz)
at luminosity 6x103°cm=2s1

by about 40% compared to ‘high-energy’.
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Implementation in GRL

B GRL’s FPGA : Xilinx Virtex UltraScale XCVUQO80

FPGA resource usage

LUT 34%
LUTRAM 8% . . . .
o DSP= responsible for mult|pl|cat|on,\
BRAN addition and subtraction
DSP 51%
] Before adding neural net : 0%
e — After adding neural net : 51%
8 S 2% - Sh S 7% - 168

Utilization (%)

kOften used in fully connected IayerS/

This neural network fits within GRL's available resources and
implementation completed.
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Implementation in GRL

Timin Clock freq =127MHz

input signal GG OO OO Ne

output signal

14 clocks

It takes 14 clocks from input to output = 110 ns ( < 500 ns)
Computation time of neural network is below the GRL latency limit

% Accepts new input every clock and outputs every clock (pipeline processing)
12



Operation confirmation by cosmic ray test

B Actual measurements of cosmic rays with the Belle Il detector and
comparison of data with simulations

GRL in-FPGA processing

Data from Implemented Output in a

cosmic ray tests range of [0O,1]
(ECL)

neural network

Vivado Simulation Compare

Neural Network Output in a
IP core range of [O,1]

B We confirmed the implemented hardware functions as expected.
— Plan to actually use it from the next physics run (from January 2024)
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Summary

- In the Belle Il experiment, we plan to significantly improve luminosity.
Hardware triggers with low rate are required.

- We created a new trigger logic for tau particle decay with neural network.
- It can reduce trigger rate compared to the existing one.

- Implementation has been completed in the Belle || hardware trigger system.
- It cleared constraints of timing and resource.

- This trigger will be used from the next physics run (January 2024 ~).
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