Tetraquarks and quark three-body forces

Aaron Park Yonsei University

Collaborated with Su Houng Lee and Sungsik Noh

Contents

- Introduction : Three-body forces
- New three-quark potentials
- Results(Baryons, Tetraquarks($T_{cc}, \chi_{c1}(3872)$))
- Summary

Introduction

$$C_{123} = \begin{cases} \sum_{i < j}^{3} F_{i} \cdot F_{j} \\ = F_{1} \cdot F_{2} + F_{1} \cdot F_{3} + F_{2} \cdot F_{3}, \\ d^{abc} F_{1}^{a} F_{2}^{b} F_{3}^{c}, \\ i f^{abc} F_{1}^{a} F_{2}^{b} F_{3}^{c}, \end{cases} \text{ Intrinsic 3-body forces}$$

$$d^{abc}F^{a}_{i}F^{b}_{j}F^{c}_{k} = \frac{1}{6} \left[C^{(3)}_{i+j+k} - \frac{5}{2}C^{(2)}_{i+j+k} + \frac{20}{3} \right]$$
$$\langle C^{(2)} \rangle = \frac{1}{3} (\lambda^{2} + \mu^{2} + \lambda \mu + 3\lambda + 3\mu)$$
$$\langle C^{(3)} \rangle = \frac{1}{18} (\lambda - \mu)(2\lambda + \mu + 3)(\lambda + 2\mu + 3)$$

$$\bar{\mathcal{C}}_{123} = \begin{cases} -d^{abc} F_1^a F_2^b \bar{F}_3^c, \\ d^{abc} F_1^a \bar{F}_2^b \bar{F}_3^c, \\ -d^{abc} \bar{F}_1^a \bar{F}_2^b \bar{F}_3^c. \end{cases}$$

V. Dmitrašinovic, PLB 499, 135(2001) S. Pepin and Fl. Stancu, PRD 65, 054032(2002)

$$C_{123} = \begin{cases} \sum_{i < j}^{3} F_{i} \cdot F_{j} \\ = F_{1} \cdot F_{2} + F_{1} \cdot F_{3} + F_{2} \cdot F_{3}, \\ d^{abc} F_{1}^{a} F_{2}^{b} F_{3}^{c}, \\ i f^{abc} F_{1}^{a} F_{2}^{b} F_{3}^{c}, \end{cases}$$
 Intrinsic 3-body forces

$$\begin{split} &d^{abc}F^{a}_{i}F^{b}_{j}F^{c}_{k} \\ &= \frac{1}{4}[(ijk) + (ikj)] + \frac{1}{9}I - \frac{1}{6}[(ij) + (ik) + (jk)], \\ &f^{abc}F^{a}_{i}F^{b}_{j}F^{c}_{k} = \frac{i}{4}[(ijk) - (ikj)]. \end{split}$$

$$\bar{\mathcal{C}}_{123} = \begin{cases} -d^{abc} F_1^a F_2^b \bar{F}_3^c, \\ d^{abc} F_1^a \bar{F}_2^b \bar{F}_3^c, \\ -d^{abc} \bar{F}_1^a \bar{F}_2^b \bar{F}_3^c. \end{cases}$$

V. Dmitrašinovic, PLB 499, 135(2001) S. Pepin and Fl. Stancu, PRD 65, 054032(2002)

$$C_{123} = \begin{cases} \sum_{i < j}^{3} F_i \cdot F_j \\ = F_1 \cdot F_2 + F_1 \cdot F_3 + F_2 \cdot F_3, \\ d^{abc} F_1^a F_2^b F_3^c, \\ i f^{abc} F_1^a F_2^b F_3^c, \end{cases}$$
 Intrinsic 3-body forces

$$\begin{aligned} d^{abc}F^{a}_{i}F^{b}_{j}F^{c}_{k} \\ &= \frac{1}{4}[(ijk) + (ikj)] + \frac{1}{9}I - \frac{1}{6}[(ij) + (ik) + (jk)], \\ f^{abc}F^{a}_{i}F^{b}_{j}F^{c}_{k} &= \frac{i}{4}[(ijk) - (ikj)]. \end{aligned}$$

$$\bar{\mathcal{C}}_{123} = \begin{cases} -d^{abc} F_1^a F_2^b \bar{F}_3^c, \\ d^{abc} F_1^a \bar{F}_2^b \bar{F}_3^c, \\ -d^{abc} \bar{F}_1^a \bar{F}_2^b \bar{F}_3^c. \end{cases}$$

For a baryon,

$$d^{abc}F^a_iF^b_jF^c_k = \frac{10}{9},$$
$$f^{abc}F^a_iF^b_jF^c_k = 0.$$

V. Dmitrašinovic, PLB 499, 135(2001)

S. Pepin and Fl. Stancu, PRD 65, 054032(2002)

$$C_{123} = \begin{cases} \sum_{i < j}^{3} F_i \cdot F_j \\ = F_1 \cdot F_2 + F_1 \cdot F_3 + F_2 \cdot F_3, \\ d^{abc} F_1^a F_2^b F_3^c, \\ i f^{abc} F_1^a F_2^b F_3^c, \end{cases}$$
 Intrinsic 3-body forces

$$d^{abc}F_{i}^{a}F_{j}^{b}F_{k}^{c}$$

= $\frac{1}{4}[(ijk) + (ikj)] + \frac{1}{9}I - \frac{1}{6}[(ij) + (ik) + (jk)],$
 $f^{abc}F_{i}^{a}F_{j}^{b}F_{k}^{c} = \frac{i}{4}[(ijk) - (ikj)].$

$$\bar{\mathcal{C}}_{123} = \begin{cases} -d^{abc} F_1^a F_2^b \bar{F}_3^c, \\ d^{abc} F_1^a \bar{F}_2^b \bar{F}_3^c, \\ -d^{abc} \bar{F}_1^a \bar{F}_2^b \bar{F}_3^c. \end{cases}$$

For a baryon,

$$d^{abc}F^a_iF^b_jF^c_k = \frac{10}{9},$$
$$f^{abc}F^a_iF^b_jF^c_k = 0.$$

4 0

For a tetraquark,

$$V_{s} = c \frac{5}{18} \omega^{2} (\mathbf{r}_{12}^{2} + \mathbf{r}_{13}^{2} + \mathbf{r}_{14}^{2} + \mathbf{r}_{23}^{2} + \mathbf{r}_{24}^{2} + \mathbf{r}_{34}^{2}),$$

$$V_{a} = -c \frac{5}{9} \omega^{2} (\mathbf{r}_{12}^{2} + \mathbf{r}_{13}^{2} + \mathbf{r}_{14}^{2} + \mathbf{r}_{23}^{2} + \mathbf{r}_{24}^{2} + \mathbf{r}_{34}^{2}).$$

$$[s \equiv 8, a \equiv 1]$$

$$-\frac{3}{2} < c < \frac{78}{5}.$$

V. Dmitrašinovic, PLB 499, 135(2001) S. Pepin and Fl. Stancu, PRD 65, 054032(2002)

Casimir Invariants

There are two Casimir operators in SU(3).

*C*₂: quadratic Casimir operator *C*₃: cubic Casimir operator

i

$$C_{2} = \sum_{i,j} F_{i}^{c} F_{j}^{c} = \sum_{i} F_{i}^{c} F_{i}^{c} + 2 \sum_{i < j} F_{i}^{c} F_{j}^{c}$$

$$C_{3} = \sum_{i,j,k} d^{abc} F_{i}^{a} F_{j}^{b} F_{k}^{c}$$

$$= \sum d^{abc} F_{i}^{a} F_{i}^{b} F_{i}^{c} + 6 \sum d^{abc} F_{i}^{a} F_{j}^{b} F_{k}^{c} + 6 \sum d^{abc} F_{i}^{a} F_{j}^{b} F_{k}^{c}$$

i < j

i < j < k

Casimir Invariants

For SU(N),

total number of box : $n = p_1 + 2p_2 + \dots + Np_N = \sum_{k=1}^N kp_k$

$$C_2^{SU(N)} = \frac{n}{2N}(N^2 - 1) + \frac{1}{N}(N - 1)\left[\sum_{i=1}^N \binom{\sum_{j=i}^N p_j}{2}\right] - \sum_{k=1}^{N-1} \left(\sum_{j=k+1}^N (j-k)p_j\right)\left(1 + \frac{1}{N}\sum_{i=k}^N p_i\right)$$

$$\begin{split} C_2^{\mathrm{SU}(3)} &= p_1 + \frac{p_1^2}{3} + p_2 + \frac{1}{3}p_1p_2 + \frac{p_2^2}{3} \\ C_2^{\mathrm{SU}(4)} &= \frac{3p_1}{2} + \frac{3p_1^2}{8} + 2p_2 + \frac{1}{2}p_1p_2 + \frac{p_2^2}{2} + \frac{3p_3}{2} + \frac{1}{4}p_1p_3 + \frac{1}{2}p_2p_3 + \frac{3p_3^2}{8} \\ C_2^{\mathrm{SU}(5)} &= 2p_1 + \frac{2p_1^2}{5} + 3p_2 + \frac{3}{5}p_1p_2 + \frac{3p_2^2}{5} + 3p_3 + \frac{2}{5}p_1p_3 + \frac{4}{5}p_2p_3 + \frac{3p_3^2}{5} + 2p_4 + \frac{1}{5}p_1p_4 + \frac{2}{5}p_2p_4 + \frac{3}{5}p_3p_4 \\ &+ \frac{2p_4^2}{5} \\ C_2^{\mathrm{SU}(6)} &= \frac{5p_1}{2} + \frac{5p_1^2}{12} + 4p_2 + \frac{2}{3}p_1p_2 + \frac{2p_2^2}{3} + \frac{9p_3}{2} + \frac{1}{2}p_1p_3 + p_2p_3 + \frac{3p_3^2}{4} + 4p_4 + \frac{1}{3}p_1p_4 + \frac{2}{3}p_2p_4 + p_3p_4 \\ &+ \frac{2p_4^2}{3} + \frac{5p_5}{2} + \frac{1}{6}p_1p_5 + \frac{1}{3}p_2p_5 + \frac{1}{2}p_3p_5 + \frac{2}{3}p_4p_5 + \frac{5p_5^2}{12} \end{split}$$

Casimir invariants does not depend on p_N .

Casimir Invariants

For SU(N),

1

total number of box :
$$n = p_1 + 2p_2 + \dots + Np_N = \sum_{k=1}^N kp_k$$

$$\begin{split} C_3^{\mathrm{SU}(3)} &= \frac{1}{18}(p_1 - p_2)(p_1 + 2p_2 + 3)(2p_1 + p_2 + 3) \\ C_3^{\mathrm{SU}(4)} &= \frac{3}{2}p_1 + \frac{9}{8}p_1^2 + \frac{3}{16}p_1^3 + \frac{3}{4}p_1p_2 + \frac{3}{8}p_1^2p_2 - \frac{3}{2}p_3 + \frac{3}{16}p_1^2p_3 - \frac{3}{4}p_2p_3 - \frac{9}{8}p_3^2 - \frac{3}{16}p_1p_3^2 - \frac{3}{8}p_2p_3^2 - \frac{3}{16}p_3^3 \\ C_3^{\mathrm{SU}(5)} &= 3p_1 + \frac{9p_1^2}{5} + \frac{6p_1^3}{25} + \frac{3p_2}{2} + \frac{9}{5}p_1p_2 + \frac{27}{50}p_1^2p_2 + \frac{9p_2^2}{10} + \frac{9p_2^2}{50}p_1p_2^2 + \frac{3p_2^3}{25} - \frac{3p_3}{2} + \frac{3}{5}p_1p_3 + \frac{9}{25}p_1^2p_3 + \frac{6}{25}p_1p_2p_3 \\ &\quad + \frac{6}{25}p_2^2p_3 - \frac{9p_3^2}{10} - \frac{3}{25}p_1p_3^2 - \frac{6}{25}p_2p_3^2 - \frac{3p_3^3}{25} - 3p_4 + \frac{9}{50}p_1^2p_4 - \frac{3}{5}p_2p_4 + \frac{3}{25}p_1p_2p_4 + \frac{3}{25}p_2^2p_4 - \frac{9}{5}p_3p_4 \\ &\quad - \frac{3}{25}p_1p_3p_4 - \frac{6}{25}p_2p_3p_4 - \frac{9}{50}p_3^2p_4 - \frac{9p_4^2}{5} - \frac{9}{50}p_1p_4^2 - \frac{9}{25}p_2p_4^2 - \frac{27}{50}p_3p_4^2 - \frac{6p_4^3}{25} \\ C_3^{\mathrm{SU}(6)} &= 5p_1 + \frac{5p_1^2}{2} + \frac{5p_1^3}{18} + 4p_2 + 3p_1p_2 + \frac{2}{3}p_1^2p_2 + 2p_2^2 + \frac{1}{3}p_1p_2^2 + \frac{2p_2^3}{9} + \frac{3}{2}p_1p_3 + \frac{1}{2}p_1^2p_3 + \frac{3}{2}p_2p_3 + \frac{1}{2}p_1p_2p_3 \\ &\quad + \frac{1}{2}p_2^2p_3 - 4p_4 + \frac{1}{2}p_1p_4 + \frac{1}{3}p_1^2p_4 + \frac{1}{3}p_1p_2p_4 + \frac{1}{3}p_2^2p_4 - \frac{3}{2}p_3p_4 - 2p_4^2 - \frac{1}{6}p_1p_4^2 - \frac{1}{3}p_2p_4^2 - \frac{1}{2}p_3p_4^2 - \frac{2p_4^3}{9} \\ &\quad - 5p_5 + \frac{1}{6}p_1^2p_5 - \frac{1}{2}p_2p_5 + \frac{1}{6}p_1p_2p_5 + \frac{1}{6}p_2^2p_5 - \frac{3}{2}p_3p_5 - 3p_4p_5 - \frac{1}{6}p_1p_4p_5 - \frac{1}{3}p_2p_4p_5 - \frac{1}{2}p_3p_4p_5 - \frac{1}{3}p_4^2p_5 \\ &\quad - \frac{5p_5^2}{2} - \frac{1}{6}p_1p_5^2 - \frac{1}{3}p_2p_5^2 - \frac{1}{2}p_3p_5^2 - \frac{2}{3}p_4p_5^2 - \frac{5p_5^3}{18} \end{split}$$

Casimir invariants does not depend on p_N . However, note that interaction factor can depend on total number of quarks.

Three-body forces in nuclear physics

$$V^{(3)} = V(123) + V(231) + V(312),$$

$$V(123) = -[\{A(\tau^{1}\tau^{2}) (\tau^{2}\tau^{3}) + B(\tau^{3}\tau^{2}) (\tau^{2}\tau^{1})\} (\sigma^{1}\overline{V}^{1}) (\sigma^{2}\overline{V}^{1}) (\sigma^{2}\overline{V}^{3}) (\sigma^{3}\overline{V}^{3}) \\ + \{B(\tau^{1}\tau^{2}) (\tau^{2}\tau^{3}) + A(\tau^{3}\tau^{2}) (\tau^{2}\tau^{1})\} (\sigma^{3}\overline{V}^{3}) (\sigma^{2}\overline{V}^{3}) (\sigma^{2}\overline{V}^{1}) (\sigma^{1}\overline{V}^{1}) \\ + 2D(\tau^{1}\tau^{3}) (\sigma^{1}\overline{V}^{1}) (\sigma^{3}\overline{V}^{3})] Y(12) Y(23),$$

G.E.Brown et al, Nucl. Phys. A 115, 435(1968)

J.Fujita and H.Miyazawa, Prog. Theor. Phys. 17, 360(1957)

The middle nucleon goes virtually to some excited state.

E.Epelbaum, Prog. Part. Nucl. Phys. 57, 654(2006)

Leading contributions to the 3NF due to explicit Δ 's.

How about applying this concept to the three-quark potential?

New three-quark potentials

New three-quark potentials: color-color

New three-quark potentials: color-color

$$\begin{split} (\lambda_1^a \lambda_2^a) (\lambda_2^b \lambda_3^b) &+ (\lambda_2^a \lambda_3^a) (\lambda_1^b \lambda_2^b) = \lambda_1^a (-\lambda_2^b \lambda_2^a + \frac{4}{3} \delta^{ab} + 2d^{abc} \lambda_2^c) \lambda_3^b + (\lambda_2^a \lambda_3^a) (\lambda_1^b \lambda_2^b) \\ &= -\lambda_1^a \lambda_2^b \lambda_2^a \lambda_3^b + \frac{4}{3} \lambda_1^a \lambda_3^a + 2d^{abc} \lambda_1^a \lambda_2^c \lambda_3^b + (\lambda_2^a \lambda_3^a) (\lambda_1^b \lambda_2^b) \\ &= -(\lambda_2^a \lambda_3^a) (\lambda_1^b \lambda_2^b) + \frac{4}{3} \lambda_1^a \lambda_3^a + 2d^{abc} \lambda_1^a \lambda_2^b \lambda_3^c + (\lambda_2^a \lambda_3^a) (\lambda_1^b \lambda_2^b) \\ &= \frac{4}{3} \lambda_1^a \lambda_3^a + 2d^{abc} \lambda_1^a \lambda_2^b \lambda_3^c \end{split}$$

$$L_{123}^{C-C} = \frac{4}{3} \left(\frac{\lambda_2^c \lambda_3^c}{m_1} + \frac{\lambda_1^c \lambda_3^c}{m_2} + \frac{\lambda_1^c \lambda_2^c}{m_3} \right) + 2 \frac{d^{abc} (\lambda_1^a \lambda_2^b \lambda_3^c)}{(m_1^c + m_2^c + m_3^c)} \left(\frac{1}{m_1^c} + \frac{1}{m_2^c} + \frac{1}{m_3^c} \right)$$

New three-quark potentials: color-spin

$$\begin{split} L_{123}^{S-S} &= \frac{1}{m_1 m_2 m_3} \Bigg[\frac{4}{3} \Bigg(\frac{(\sigma_2 \cdot \sigma_3) (\lambda_2^c \lambda_3^c)}{m_1^2} + \frac{(\sigma_1 \cdot \sigma_3) (\lambda_1^c \lambda_3^c)}{m_2^2} + \frac{(\sigma_1 \cdot \sigma_2) (\lambda_1^c \lambda_2^c)}{m_3^2} \Bigg) \\ &+ 2 \frac{d^{abc} (\lambda_1^a \lambda_2^b \lambda_3^c)}{m_1^2} \Bigg(\frac{\sigma_2 \cdot \sigma_3}{m_1^2} + \frac{\sigma_1 \cdot \sigma_3}{m_2^2} + \frac{\sigma_1 \cdot \sigma_2}{m_3^2} \Bigg) - 2 \epsilon_{ijk} \sigma_1^i \sigma_2^j \sigma_3^k \frac{f^{abc} \lambda_1^a \lambda_2^b \lambda_3^c}{m_1^2} \Bigg(\frac{1}{m_1^2} + \frac{1}{m_2^2} + \frac{1}{m_3^2} \Bigg) \Bigg] \end{split}$$

New three-quark potentials: color-spin hybrid

$$+ (1 \leftrightarrow 2) + (2 \leftrightarrow 3)$$

$$\begin{split} L_{123}^{C-S} &= \frac{4}{3} \bigg[\frac{(\lambda_1^c \lambda_3^c)}{m_2} \bigg(\frac{\sigma_2 \cdot \sigma_3}{m_2 m_3} + \frac{\sigma_1 \cdot \sigma_2}{m_2 m_1} \bigg) + \frac{(\lambda_1^c \lambda_2^c)}{m_3} \bigg(\frac{\sigma_3 \cdot \sigma_2}{m_2 m_3} + \frac{\sigma_1 \cdot \sigma_3}{m_3 m_1} \bigg) + \frac{(\lambda_2^c \lambda_3^c)}{m_1} \bigg(\frac{\sigma_1 \cdot \sigma_3}{m_1 m_3} + \frac{\sigma_1 \cdot \sigma_2}{m_2 m_1} \bigg) \bigg] \\ &+ 2 d_{abc} (\lambda_1^a \lambda_2^b \lambda_3^b) \bigg[\frac{1}{m_2} \bigg(\frac{\sigma_2 \cdot \sigma_3}{m_2 m_3} + \frac{\sigma_1 \cdot \sigma_2}{m_2 m_1} \bigg) + \frac{1}{m_3} \bigg(\frac{\sigma_3 \cdot \sigma_2}{m_2 m_3} + \frac{\sigma_1 \cdot \sigma_3}{m_3 m_1} \bigg) + \frac{1}{m_1} \bigg(\frac{\sigma_1 \cdot \sigma_3}{m_1 m_3} + \frac{\sigma_1 \cdot \sigma_2}{m_2 m_1} \bigg) \bigg] \end{split}$$

New three-quark potentials: antiquarks

For antiquarks, $\{\bar{\lambda}^{a}, \bar{\lambda}^{b}\} = \frac{4}{3}\delta^{ab} - 2d^{abc}\bar{\lambda}^{c}$ $[\bar{\lambda}^{a}, \bar{\lambda}^{b}] = 2if^{abc}\bar{\lambda}^{c}$

$$L_{C-C} = \left[\sum_{i < j < k} \frac{4}{3} \left(\frac{\lambda_i^c \lambda_j^c}{m_k} + \frac{\lambda_i^c \lambda_k^c}{m_j} + \frac{\lambda_j^c \lambda_k^c}{m_i} \right) + 2d^{abc} \lambda_i^a \lambda_j^b \lambda_k^c \left(\frac{\operatorname{sign}(i)}{m_i} + \frac{\operatorname{sign}(j)}{m_j} + \frac{\operatorname{sign}(k)}{m_k} \right) \right]$$

$$\begin{split} L_{S-S} &= \sum_{i < j < k} \frac{1}{m_i m_j m_k} \left[\frac{4}{3} \left(\frac{\lambda_j^c \lambda_k^c \sigma_j \cdot \sigma_k}{m_i^2} + \frac{\lambda_i^c \lambda_k^c \sigma_i \cdot \sigma_k}{m_j^2} + \frac{\lambda_i^c \lambda_j^c \sigma_i \cdot \sigma_j}{m_k^2} \right) \\ &+ 2d^{abc} \lambda_i^a \lambda_j^b \lambda_k^c \left(\frac{\operatorname{sign}(i)\sigma_j \cdot \sigma_k}{m_i^2} + \frac{\operatorname{sign}(j)\sigma_i \cdot \sigma_k}{m_j^2} + \frac{\operatorname{sign}(k)\sigma_i \cdot \sigma_j}{m_k^2} \right) \\ &- 2\epsilon_{ijk} \sigma_1^i \sigma_2^j \sigma_3^k f^{abc} \lambda_1^a \lambda_2^b \lambda_3^c \left(\frac{1}{m_1^2} + \frac{1}{m_2^2} + \frac{1}{m_3^2} \right) \right], \end{split}$$

$$\begin{split} L_{C-S} &= \sum_{i < j < k} \frac{4}{3} \left\{ \frac{\lambda_j^c \lambda_k^c}{m_i} \left(\frac{\sigma_i \cdot \sigma_j}{m_i m_j} + \frac{\sigma_i \cdot \sigma_k}{m_i m_k} \right) + \frac{\lambda_i^c \lambda_k^c}{m_j} \left(\frac{\sigma_i \cdot \sigma_j}{m_i m_j} + \frac{\sigma_j \cdot \sigma_k}{m_j m_k} \right) + \frac{\lambda_i^c \lambda_j^c}{m_k} \left(\frac{\sigma_i \cdot \sigma_k}{m_i m_k} + \frac{\sigma_j \cdot \sigma_k}{m_j m_k} \right) \right] \\ &+ 2d^{abc} \lambda_i^c \lambda_j^c \lambda_k^c \left[\frac{\operatorname{sign}(i)}{m_i} \left(\frac{\sigma_i \cdot \sigma_j}{m_i m_j} + \frac{\sigma_i \cdot \sigma_k}{m_i m_k} \right) + \frac{\operatorname{sign}(j)}{m_j} \left(\frac{\sigma_i \cdot \sigma_j}{m_i m_j} + \frac{\sigma_j \cdot \sigma_k}{m_j m_k} \right) + \frac{\operatorname{sign}(k)}{m_j} \left(\frac{\sigma_i \cdot \sigma_k}{m_j m_k} + \frac{\sigma_j \cdot \sigma_k}{m_j m_k} \right) \right] \right\} \end{split}$$

where sign(i) = -1 for antiquarks.

Results (Baryons, Tetraquarks)

Baryon fitting

$$H = \sum_{i=1}^{n} \left(m_{i} + \frac{\mathbf{p}_{i}^{2}}{2m_{i}} \right) - \frac{3}{4} \sum_{i

$$V_{ij}^{C} = -\frac{\kappa}{r_{ij}} + \frac{r_{ij}}{a_{0}^{2}} - D,$$

$$V_{ij}^{CS} = \frac{\hbar^{2} c^{2} \kappa'}{m_{i} m_{j} c^{4}} \frac{e^{-(r_{ij})^{2}/(r_{0ij})^{2}}}{(r_{0ij}) r_{ij}} \sigma_{i} \cdot \sigma_{j}.$$

$$r_{0ij} = (\alpha + \beta m_{ij})^{-1}, \ \kappa' = \kappa_{0} \left(1 + \gamma m_{ij}\right) \text{ and } m_{ij} = \frac{m_{i} m_{j}}{m_{i} + m_{j}}$$$$

$$V^{3-body} = AL_{C-C} + BL_{S-S} + CL_{C-S}$$

$$A = -3.67522 \times 10^{-4} \,\text{GeV}^2, \ B = -2.85156 \times 10^{-7} \,\text{GeV}^6, \ C = -7.68351 \times 10^{-6} \,\text{GeV}^4$$

Dentiale	Experimental	Mass	Variational		Experimental	Mass	Variational
Particle	Value (MeV)	(MeV)	Parameter (fm^{-2})	Particle	Value (MeV)	(MeV)	Parameters (fm^{-2})
η_c	2983.6	2996.9	a = 13.1	Λ_c	2286.5	2266.7 (2281.6)	$a_1 = 2.9, a_2 = 3.7$
$J\Psi$	3096.9	3089.6	a = 11.1	Σ_c	2452.9	2441.6 (2480.9)	$a_1 = 2.1, a_2 = 3.8$
D	1864.8	1864.1	a = 4.5	Λ	1115.7	1113.6 (1134.1)	$a_1 = 2.8, a_2 = 2.7$
D^*	2010.3	2010.7	a = 3.7	Σ	1192.6	1196.5(1231.6)	$a_1 = 2.1, a_2 = 3.1$
π	139.57	139.39	a = 4.6	Σ_c^*	2518.5	2522.9 (2567.7)	$a_1 = 2.0, a_2 = 3.4$
ho	775.11	775.49	a = 2.2	Σ^*	1383.7	1398.9(1455.2)	$a_1 = 1.9, a_2 = 2.4$
K	493.68	494.62	a = 4.6	p	938.27	980.47 (1005.3)	$a_1 = 2.4, a_2 = 2.4$
K^*	891.66	888.82	a = 2.8	Δ	1232	1272.1 (1346.8)	$a_1 = 1.8, a_2 = 1.8$

The standard deviation is $\sigma = 5.86$.

The Reimei Workshop: Hadron interactions with strangeness and charm

With 3-quark potential

 $\sigma = 24.44(63.10)$

Three-body color matrices for a tetraquark

 $T_{cc}: \bar{u}\bar{d}cc$

$$\begin{split} f^{abc}\overline{\lambda}_{1}^{a}\overline{\lambda}_{2}^{b}\lambda_{3}^{c} &= \begin{pmatrix} 0 & -4i\sqrt{2} \\ 4i\sqrt{2} & 0 \end{pmatrix} & d^{abc}\overline{\lambda}_{1}^{a}\overline{\lambda}_{2}^{b}\lambda_{3}^{c} &= \begin{pmatrix} -\frac{40}{9} & 0 \\ 0 & \frac{20}{9} \end{pmatrix} \\ f^{abc}\overline{\lambda}_{1}^{a}\overline{\lambda}_{2}^{b}\lambda_{4}^{c} &= \begin{pmatrix} 0 & 4i\sqrt{2} \\ -4i\sqrt{2} & 0 \end{pmatrix} & d^{abc}\overline{\lambda}_{1}^{a}\overline{\lambda}_{2}^{b}\lambda_{4}^{c} &= \begin{pmatrix} -\frac{40}{9} & 0 \\ 0 & \frac{20}{9} \end{pmatrix} \\ f^{abc}\overline{\lambda}_{1}^{a}\lambda_{3}^{b}\lambda_{4}^{c} &= \begin{pmatrix} 0 & -4i\sqrt{2} \\ 4i\sqrt{2} & 0 \end{pmatrix} & d^{abc}\overline{\lambda}_{1}^{a}\lambda_{3}^{b}\lambda_{4}^{c} &= \begin{pmatrix} \frac{40}{9} & 0 \\ 0 & -\frac{20}{9} \end{pmatrix} \\ f^{abc}\overline{\lambda}_{2}^{a}\lambda_{3}^{b}\lambda_{4}^{c} &= \begin{pmatrix} 0 & 4i\sqrt{2} \\ -4i\sqrt{2} & 0 \end{pmatrix} & d^{abc}\overline{\lambda}_{2}^{a}\lambda_{3}^{b}\lambda_{4}^{c} &= \begin{pmatrix} \frac{40}{9} & 0 \\ 0 & -\frac{20}{9} \end{pmatrix} \end{split}$$

 $|1_{13}1_{24}\rangle, |8_{13}8_{24}\rangle$ color basis

 $|3_{12}\overline{3}_{34}\rangle, |\overline{6}_{12}6_{34}\rangle$ color basis

 $\chi_{c1}: \bar{c}\bar{q}cq$

$$\begin{split} f^{abc}\overline{\lambda}_{1}^{a}\overline{\lambda}_{2}^{b}\lambda_{3}^{c} &= \begin{pmatrix} 0 & -4i\sqrt{2} \\ 4i\sqrt{2} & 0 \end{pmatrix} & d^{abc}\overline{\lambda}_{1}^{a}\overline{\lambda}_{2}^{b}\lambda_{3}^{c} &= \begin{pmatrix} 0 & \frac{20\sqrt{2}}{9} \\ \frac{20\sqrt{2}}{9} & -\frac{20}{9} \end{pmatrix} \\ f^{abc}\overline{\lambda}_{1}^{a}\overline{\lambda}_{2}^{b}\lambda_{4}^{c} &= \begin{pmatrix} 0 & 4i\sqrt{2} \\ -4i\sqrt{2} & 0 \end{pmatrix} & d^{abc}\overline{\lambda}_{1}^{a}\overline{\lambda}_{2}^{b}\lambda_{4}^{c} &= \begin{pmatrix} 0 & \frac{20\sqrt{2}}{9} \\ \frac{20\sqrt{2}}{9} & -\frac{20}{9} \end{pmatrix} \\ f^{abc}\overline{\lambda}_{1}^{a}\lambda_{3}^{b}\lambda_{4}^{c} &= \begin{pmatrix} 0 & -4i\sqrt{2} \\ 4i\sqrt{2} & 0 \end{pmatrix} & d^{abc}\overline{\lambda}_{1}^{a}\lambda_{3}^{b}\lambda_{4}^{c} &= \begin{pmatrix} 0 & -\frac{20\sqrt{2}}{9} \\ -\frac{20\sqrt{2}}{9} & \frac{20}{9} \end{pmatrix} \\ f^{abc}\overline{\lambda}_{2}^{a}\lambda_{3}^{b}\lambda_{4}^{c} &= \begin{pmatrix} 0 & 4i\sqrt{2} \\ -4i\sqrt{2} & 0 \end{pmatrix} & d^{abc}\overline{\lambda}_{2}^{a}\lambda_{3}^{b}\lambda_{4}^{c} &= \begin{pmatrix} 0 & -\frac{20\sqrt{2}}{9} \\ -\frac{20\sqrt{2}}{9} & \frac{20}{9} \end{pmatrix} \end{split}$$

Three-body potentials in a tetraquark

T_{cc}	$(3_{12}\overline{3}_{34}\rangle, \overline{6}_{12}6_{34}\rangle)$					
$L_{C-C} = \Big($	$\begin{pmatrix} \frac{32}{9m_u} + \frac{32}{9m_c} & 0\\ 0 & -\frac{208}{9m_u} - \end{pmatrix}$	$-\frac{208}{9m_c}$				
$L_{S-S} = \left(\right)$	$\left(\begin{array}{c} -rac{224}{9m_u^3mc^2}+rac{3m_u^2}{3m_u^4m_c}+rac{32\sqrt{2}}{m_u^3m_c^2}-rac{32}{m_u^4m_c} \end{array} ight)$	$\frac{\frac{224}{m_u^2 m_c^3}}{\frac{2\sqrt{2}}{2um_c^3} + \frac{160\sqrt{2}}{3m_u m_c^4}} - \frac{\frac{22}{3m_u^2}}{\frac{2\sqrt{2}}{3m_u m_c^4}}$	$rac{24\sqrt{2}}{n_u^4m_c}+rac{32\sqrt{2}}{m_u^3m_c^2}-rac{112}{3m_u^3m_c^2}-rac{112}{3m_u^3m_c^2}$	$-\frac{32\sqrt{2}}{m_u^2 m_c^3} + \frac{160\sqrt{3}}{3m_u m} \\ + \frac{112}{9m_u^2 m_c^3}$	$\left(\frac{\overline{2}}{n_c^4}\right)$	
$L_{C-S} = \left(\right.$	$\begin{pmatrix} -\frac{256}{3m_u^3} + \frac{256}{9m_c^3} & \frac{3}{3n} \\ \frac{32\sqrt{2}}{3m_u^2m_c} + \frac{32\sqrt{2}}{3m_um_c^2} & - \end{pmatrix}$	$ \begin{pmatrix} \frac{2\sqrt{2}}{n_u^2 m_c} + \frac{32\sqrt{2}}{3m_u m_c^2} \\ -\frac{320}{9m_u^3} + \frac{320}{3m_c^3} \end{pmatrix} $			V^{3-bod}	$y = AL_{C-C} + BL_{S-S} + CL_{C-S}$
						$A = -3.67522 \times 10^{-4} \mathrm{GeV}^2$
$\gamma_{c1}(3)$	$(1_{13}1_{24})$	$(8_{13} 8_{24}))$				$B = -2.85156 \times 10^{-7} \mathrm{GeV^6}$
XCI (O		// 10 24//				$C = -7.68351 \times 10^{-6} \text{ CoV}^4$
$L_{C-C} =$	$\left(\begin{array}{c} -\frac{128}{9m_u} - \frac{128}{9m_c} & -\frac{80}{9r}\\ -\frac{80\sqrt{2}}{9m_u} - \frac{80\sqrt{2}}{9m_c} & -\frac{30}{3}\end{array}\right)$	$ \frac{\sqrt{2}}{m_u} - \frac{80\sqrt{2}}{9m_c} \\ \frac{16}{m_u} - \frac{16}{3m_c} $				$C = -7.06551 \times 10$ GeV
$L_{S-S} =$	$\left(\begin{array}{c} -\frac{128}{9m_u^3mc^2}-\frac{128}{9m_u^2m_c^3}\\ -\frac{80\sqrt{2}}{9m_u^3m_c^2}-\frac{80\sqrt{2}}{9m_u^2m_c^3}\end{array}\right)$	$\frac{-\frac{80\sqrt{2}}{9m_u^3m_c^2}}{\frac{32}{3m_u^3m_c^2}} + \frac{32}{3m_u^2m_c^3}}$	$-\frac{80\sqrt{2}}{9m_u^2 m_c^3} + \frac{16}{m_u m_c^4} + \frac{16}{m_u^4}$	$\left(\frac{6}{m_c}\right)$		
$L_{C-S} =$	$\left(\begin{array}{c} \frac{256}{9m_u^2m_c} + \frac{256}{9m_um_c^2} \\ \frac{160\sqrt{2}}{9m_u^2m_c} + \frac{160\sqrt{2}}{9m_um_c^2} \end{array}\right)$	$\frac{\frac{160\sqrt{2}}{9m_u^2m_c} + \frac{160}{9m_u}}{\frac{16}{m_u^3} - \frac{16}{3m_u^2m_c} - \frac{16}{3m_u}}$	$\left(rac{\sqrt{2}}{m_c^2} \\ rac{16}{m_u m_c^2} - rac{16}{m_c^3} \end{array} ight)$			
Particle	Measured mass (MeV)	Mass~(MeV)	$\overline{\sum_{i < j < k} L_{ijk}^{C-C}}$	$\sum_{i < j < k} L_{ijk}^{S-S}$	$\overline{\sum_{i < j < k} L_{ijk}^{C-S}}$	Variational parameters (fm^{-2})
T_{cc}	3875	3972.06 (3955.18)	-4.84236	0.0319013	20.9444	$a_1 = 2.8, a_2 = 7.3, a_3 = 2.6$
$\chi_{c1}(3872)$	3872	3884.23 (3866.20)	19.3694	0.0427164	-1.36541	$a_1 = 11.1, a_2 = 2.2, a_3 = 0.01$
		1				
	With	3-quark potential				

Three-body potentials in a tetraquark

Three-body potentials in a tetraquark

$$\chi_{c1}: \bar{c}\bar{q}cq \qquad (1_{13}1_{24}), |8_{13}8_{24}\rangle) \qquad |1_{13}1_{24}\rangle, |8_{13}8_{24}\rangle = (1_{13}1_{24}), |8_{13}8_{24}\rangle = (1_{13}1_$$

$$AL_{C-C}$$
 \implies Repulsive

Particle	Measured mass (MeV)	Mass~(MeV)	$\sum_{i < j < k} L_{ijk}^{C-C}$	$\sum_{i < j < k} L_{ijk}^{S-S}$	$\sum_{i < j < k} L_{ijk}^{C-S}$	Variational parameters (fm^{-2})
T_{cc}	3875	3972.06 (3955.18)	-4.84236	0.0319013	20.9444	$a_1 = 2.8, a_2 = 7.3, a_3 = 2.6$
$\chi_{c1}(3872)$	3872	3884.23 (3866.20)	19.3694	0.0427164	-1.36541	$a_1 = 11.1, a_2 = 2.2, a_3 = 0.01$
		•				

With 3-quark potential

Summary

- Inspired by the three-body nuclear force, the three-quark potentials are newly constructed.
- We found the fitting parameters for three-quark potentials using meson and baryon spectrum.
- When the three-quark potential is applied to tetraquark, it shows repulsive interaction.

Thank you