Hadron interactions in high-energy heavy-ion collisions

Koichi Murase Tokyo Metropolitan University

Hadron interactions with strangeness and charm, Jeju, Korea

1

2024/6/28

High-energy heavy-ion collisions (HIC)

Colliders: LHC, RHIC, FAIR, NICA, J-PARC-HI, HIAF, ...

RHIC $\sqrt{s_{NN}} \sim 3-200 \text{ GeV}$

LHC √s_{NN} = 2.76−5.44 TeV

Heavy ions (Nuclei) collide at relativistic speed

<u>High-energy heavy-ion collisions (HIC)</u>

(Typical) Dynamical model for HIC =

Hadron interactions from HIC

ExHIC, PPNP 95, 279 (2017)

Production of Hadrons & Resonances

> statistical model, quark recombination, rescatterings, ...

Production of Light nuclei & hypernuclei

statistical model, (hadron) coalescence model, dynamical formation, ...

Anisotropic flow v_1 , v_2 , ...

hadron transport, cascade / mean-field interaction @ low energy collisions @ small systems @ central collisions

Femtoscopy

two-particle momentum correlation

S(r): source function, $\varphi(r)$: relative wave function $\leftarrow V(r)$: hadron potential + nontrivial assumptions

Λ DIRECTED FLOW V1 IN HEAVY-ION COLLISIONS

WITH Y. NARA (akita international univ), A. JINNO (kyoto univ), A. OHNISHI[†] (yitp, kyoto univ)

<u>NNN</u> potential and NS/HIC/hypernuclei</u>

Hyperon puzzle in neutron stars

"EoS with hyperons is typically too soft to explain the observed massive neutron stars"

Scenario: Λ baryons do not appear in NS because of 3-body repulsive forces of Λ

ΛΝΝ force from χΕFT: Gerstung, Kaiser, Weise (2020) (GKW), Kohno (2018)

ANN force

Directed flow v₁ in heavy-ion collisions

Repulsion → positive v1 slope @ initial stage negative v1 slope @ later stage

Y. Nara, A. Jinno, KM, and A. Ohnishi, PRC **106**, 4, 044902 (2022) Binding energies of hypernuclei

 \wedge binding energy $B_{\Lambda} = -(E_{\text{Hyper}} - E_{\text{Core}})$

with Skyrme-Hartree-Fock calc

A. Jinno, Y. Nara, KM, A. Ohnishi, PRC **108**, 6, 065803 (2023) Test Λ potentials using experimental data

Lower-energy collisions $\sqrt{s_{_{\rm NN}}} \sim 3-20 \, {\rm GeV}$

 \rightarrow Repulsion by ANN potential affects A-flow: $v_1(PID=A)!$

Nara & Ohnishi (2022)

We expect Λ potential affects Λv_1

<u>v₁ in heavy-ion collisions</u>

Model for collision reaction: JAM/RQMDv

Nara & Ohnishi, PRC 105 (2022) 014911

Relativistic quantum molecular dynamics (RQMD) with Lorentz vector type potential (RQMDv)

Result

★JAM2 available at 🦊

https://gitlab.com/transportmodel/jam2

- proton v_1 slope as a function of $\sqrt{s_{NN}}$ is reproduced by the model with a single EOS
- The Λ result also reproduces the data
- No significant dependence on the potential

Future: potentiaals of Σ and other hyperons by A. Jinno

FEMTOSCOPY

P & q: Total & relative momentum

Koonin-Pratt formula (widely used to relate it to physics)

$$C(\boldsymbol{q},\boldsymbol{P}) = \int d\boldsymbol{r} S_{12}(\boldsymbol{r}) |\varphi^{(-)}(\boldsymbol{q},\boldsymbol{r})|^2.$$

 $\varphi^{(-)}$: Relative wave function, S_{12} : two-particle source (-) = "inverse" of standard scattering experiment

2024/6/28

Koonin-Pratt (KP) formula Emitted = isolated from the rest of the system at time t and evolve independently. *(Well-defined?)* **Assumption 1:** Two (or a few number of) particles are emitted from source at $r_1 \& r_2$ with total & relative momentum q' & P. Two-particle source function $S_{12}(q', r_1-r_2)$

Assumption 2: After interaction with V(r), no change in relative momentum: q' = q between emission point q' and final state q

Assumption 3: Two particles become distant from each other and observed as asymptotic plane waves $p_1 \& p_2$

Wave fn: $\varphi^{(-)} \sim \varphi^*_{\text{scatt}}$ (cf plane wave \rightarrow interaction in scattering) $C(\boldsymbol{q}, \boldsymbol{P}) = \int d\boldsymbol{r} S_{12}(\boldsymbol{r}) |\varphi^{(-)}(\boldsymbol{q}, \boldsymbol{r})|^2.$

2024/6/28

KP with spherical source & S-wave

Only S-wave

Plane wave without S-wave S-wave wave fn $\varphi_{\boldsymbol{q}}(\boldsymbol{r}) = e^{i\boldsymbol{q}\cdot\boldsymbol{r}} - j_0(qr) + \chi_q(r)$

Assumption 1: Spherical two-particle source S(r)

$$\begin{split} C(\boldsymbol{q}) &= \int d\boldsymbol{r} S(r) |\varphi_{\boldsymbol{q}}(\boldsymbol{r})|^2 \\ &= 1 + \int d\boldsymbol{r} S(r) \left\{ |\chi_q(r)|^2 - |j_0(qr)|^2 \right\} \end{split}$$

 j_0 : contribution from the plane wave

 X_q : S-wave component of scattered wave fn

Lednicky-Lyuboshitz (LL) formula (S-wave)

Assumption 2: Gaussian source

$$S(r) = \frac{1}{(4\pi R^2)^{3/2}} e^{-\frac{r^2}{4R^2}}.$$

Assumption 3: φ is asymptotic form in the entire range

$$\varphi = e^{ikz} + f(\theta) \frac{e^{ikr}}{r}$$

Result: Correlation function is analytically calculated

$$C_{\rm LL}(q) = 1 + \int d\mathbf{r} S_{12}(r) \left(|\psi_{\rm asy}(r)|^2 - |j_0(qr)|^2 \right)$$

= $1 + \frac{|f(q)|^2}{2R^2} F_3\left(\frac{r_{\rm eff}}{R}\right) + \frac{2\text{Re}f(q)}{\sqrt{\pi}R}F_1(2x) - \frac{\text{Im}f(q)}{R}F_2(2x)$

Conventionally used to fit the experimental data

FEMTOSCOPY HIGHER PARTIAL WAVES

WITH T. HYODO (TOKYO METROPOLITAN UNIV)

<u>Contributions from higher partial waves (I > 0)</u>

→Understanding of the contributions from higher partial waves?

Experimental data for the resonance peak are fitted by the Breit-Wigner form
→ How is this justified/can be improved?

Spherical source w/ higher partial wave

Full partial-wave expansion

$$\varphi_q(r,\theta) = \sum_{l=0}^{\infty} (2l+1)i^l R_l(r) P_l(\cos\theta)$$

Correlation function

$$C(q) = 1 + \sum_{l=0}^{\infty} (2l+1) \int dr 4\pi r^2 S(r) \times [|R_l(r)|^2 - |j_l(qr)|^2]$$

Contributions from partial waves: sum of each wave

Note: if source is not spherical, there arise all the mixtures of different partial waves $l \neq l'$

Example: Partial-wave contributions to C(q)

At low momentum, higher partial-waves are by orders of magnitudes suppressed

At high momentum, higher partial-wave typically have more contributions: $f_l \sim -a_l q^{2l}$

Example: Partial-wave contributions to C(q)

 $\Delta C_{I}(q)$: contribution to C(q) from the *I*-th partial wave

Change potential parameter V₀

With resonances, higher partial waves can also have significant contributions.

LL formula with higher-partial waves

With the same assumptions

Assumption: Gaussian source

$$S(r) = \frac{1}{(4\pi R^2)^{3/2}} e^{-\frac{r^2}{4R^2}}.$$
Assumption: φ is asymptotic form in the entire range

$$\varphi \approx e^{iqz} + \frac{f(\theta)e^{ikr}}{r} + \mathcal{O}\left(\frac{l(l+1)}{r^2}\right) \text{ ignore}$$
Note: With spherical Bessel, KP divergent
Besselt: Correlation function

$$f: f(\theta) = \sum_{k=1}^{\infty} (2l+1)B(\cos \theta) f_{k}$$

$$C(q) = 1 + \sum_{l=0}^{\infty} \frac{(2l+1)(-1)^l e^{-4x^2} q}{2\sqrt{\pi}x^2} \\ \times \left(\sqrt{\pi}\Im f_l + 2\Re f_l \int_0^{2x} dt e^{t^2}\right)$$

$$f_l: \quad f(\theta) =: \sum_{l=0}^{\infty} (2l+1) P_l(\cos \theta) f_l.$$

For *I*=0 (S-wave), this reproduces the original LL formula (w/o r_{eff} correction)

Q. Only two terms?

A. With the optical theorem $|f_0|^2 = q \text{ Im } f_0$, LL reduces to only two terms

Simpler expression for LL formula

In correlation function

$$C(q) = 1 + \sum_{l=0}^{\infty} \frac{(2l+1)(-1)^l e^{-4x^2} q}{2\sqrt{\pi}x^2} \\ \times \left(\sqrt{\pi}\Im f_l + 2\Re f_l \int_0^{2x} dt e^{t^2}\right)$$

The *I*-dependent part

$$\sum_{l=0}^{\infty} (2l+1)(-1)^l f_l = f(\theta = \pi) \qquad \text{Note: (-1)'} = P_l(-1) = P_l(\cos\pi)$$

Simpler representation of LL formula

$$C(q) = 1 + \frac{4\pi}{q} \Im\left[f(\pi) \int_0^\infty dr S(r) e^{2iqr}\right]$$

 \sim Im f Re S[^] + Re f Im S[^]

Discussion

Why alternating sign (-1)'?

Asymptotic form: $j_{l} \sim \sin(kr - (l+1)\pi/2)/kr$

Increases $|\varphi|^2$ and thus C(q)

Decreases $|\varphi|^2$

This is unphysical

(i.e., doesn't happen in reality).

Needs centrifugal corrections

Discussion

<u>Why backward amplitude f(π)?</u>

The plane waves contains the delta functions at forward and backward when expanded by the power of centrifugal force [l(l+1)/r²]^p

$$\begin{split} e^{iqz} &= \frac{2}{iqr} [\delta(1 - \cos\theta) e^{iqr} \\ &\quad \text{outgoing } \theta = 0 \\ &\quad + \delta(1 + \cos\theta) e^{-iqr}] + \mathcal{O}\Big(\frac{1}{r^2}\Big) \\ &\quad \text{Incoming } \theta = \pi \end{split}$$

Correlation function $\Delta C(q)$ is generated by interference between outgoing $f(\theta)/r$ and incoming plane wave $\delta(\theta-\pi)$ $\rightarrow f(\theta = \pi)$

Note: **Optical theorem** comes from the normalization of the outgoing wave $|f(\theta)/r + \delta(\theta=0)/iqr|^2$ and thus $f(\theta=0)$ plays a role

<u>Summary</u>

Heavy-ion collisions can be used to constrain interactions

Femtoscopy

Contribution of higher partial waves are also contained in the correlation function

- What is a good fitting form of the contribution?
- What is its understanding?

<u>Future</u>

Further development & understanding in hadronic stage

- Hadronic transport model Covariant formulation of RQMD & RAMD, Dynamical integration with hydro, Dynamical formation of light nuclei, etc.
- Underlying assumptions and understanding of KP formula (Re-)Validation of assumptions What is the source function S(r) in dynamical model?

BACKUP

Maximum NS mass and hyperon puzzle

Observed massive NSs

Maximum mass by EOS

 $M > 2 M_{\odot}$

VS

PSR J0952-0607: $M = 2.35 \pm 0.17 M_{\odot}$ PSR J0740+6620: $M = 2.08 \pm 0.07 M_{\odot}$ PSR J0348+0432: $M = 2.01 \pm 0.04 M_{\odot}$

... Romani et al. (2022), Miller et al. (2021), Antoniadis et al. (2013).

"hyperon puzzle"

With strange hadrons (e.g. ∧ baryon) being considered in EOS, massive NSs (M > 2 M _☉) are unlikely? (in most EOSs)

Nucleons + strange hadrons

One scenario of solving the puzzle

Scenario Λ baryons do not appear in NS because of 3-body repulsive forces of Λ

ΛΝΝ force from χEFT: Gerstung, Kaiser, Weise (2020) (GKW), Kohno (2018)

 \rightarrow Repulsive at high ρ & consistent with the scenario

