Theoretical study on $\Lambda \alpha$ and $\Xi \alpha$ correlation functions

Asanosuke Jinno (神野朝之丞, Kyoto Univ., currently staying at FZ Jülich) Yuki Kamiya (Univ. Bonn) Tetsuo Hyodo (Tokyo Metropolitan Univ.) Akira Ohnishi (YITP)

- Introduction: Femtoscopy for baryon-baryon interactions
- Λα momentum correlation function
- Ξα momentum correlation function

AJ, Y. Kamiya, T. Hyodo, and A. Ohnishi, arXiv: 2403.09126 (accepted by PRC) Y. Kamiya, AJ, T. Hyodo, and A. Ohnishi, in preparation. 2024/6/26-28 Reimei Workshop "Hadron interactions with strangeness and charm"

Theoretical study or Λα and Ξα correlation fun

Asanosuke Jinno (神野朝之丞, Kyoto Univ., currently stay Yuki Kamiya (Univ. Bonn) Tetsuo Hyodo (Tokyo Metropolitan Univ Akira Ohnishi (YITP)

- Introduction: Femtoscopy for baryon-baryon
- Λα momentum correlation function
- Ξα momentum correlation function

AJ, Y. Kamiya, T. Hyodo, and A. Ohnishi, arXiv: 2403.09126 (ac Y. Kamiya, AJ, T. Hyodo, and A. Ohnishi, in preparation. 2024/6/26-28 Reimei Workshop "Hadron interactions with strangements"

Introduction: Femtoscopy for baryonbaryon interactions

Correlation function in heavy-ion collision

• Definition:

$$C(\boldsymbol{q}) = \frac{N_{12}(\boldsymbol{p}_1, \boldsymbol{p}_2)}{N_1(\boldsymbol{p}_1)N_2(\boldsymbol{p}_2)}$$

If interaction and quantum statistics is none, C(q) = 1.

- Historically, C(q) is used to estimate the size and shape of the source.
 e.g. Hanbury Brown and Twiss (1956); Goldhaber, Goldhaber, Lee, and Pais (1960);
 Wiedemann and Heinz, Phys. Rep, 319 (1999) 145.
- Recently, by assuming the source properties, correlation function is used for examining <u>the hadron-hadron interactions</u>. Lednicky and Lyuboshits (1982); Morita, Furumoto and Ohnishi (2015)

Theoretical model

 Basic formula: Koonin-Pratt formula Koonin (1977), Pratt (1986) $C(\boldsymbol{q}) \cong \int d\boldsymbol{r} S(\boldsymbol{r}) \left| \Psi^{(-)}(\boldsymbol{r}, \boldsymbol{q}) \right|^2$

S(*r*): relative source function, $\Psi^{(-)}$: outgoing relative wave function

- If someone is included,
- Repulsive potential $\Rightarrow C < 1$
- Attractive potential without bound state ⇒ C > 1
- Attractive potential with bound state
 ⇒ C < 1 (Wavefunction has a node at r~scattering length a₀.)

Lednicky – Lyuboshits (LL) formula

Lednicky and Lyuboshits, Sov. J. Nucl. Phys. 35 (1982).

Approximation 1: Source function is a spherical Gaussian.

Approximatino 2: Asymptotic wave function is used for whole coordinate space.

 \rightarrow It can be adopted only for source size $R \gg$ (interaction range)

f: scattering amplitude

$$C_{LL}(q;f) = 1 + \int dr S(r) \left(\left| \psi_{asy}(r;f) \right|^2 - |j_0(qr)|^2 \right)$$

Expressing correlation function by only the scattering observable.

Inferring a_0 and r_{eff} from measurements

Correlation function studies of BB systems

ALICE, Nature 588 (2020) 232.

HAL QCD int.: Sasaki et al., NPA 998 (2020) 121737.

- Measured BB systems by ALICE and STAR pΛ, pΣ⁰,ΛΛ, ΛΞ, ΞΞ, and pΩ. (see AJ, Y. Kamiya, T. Hyodo, and A. Ohnishi, arXiv: 2403.09126 and references therein.)
- Recently, system with <u>A > 2</u> becomes to be studied. <u>measurements</u>
 p-deuteron(d): Singh, PoS EPS-HEP2021, 391 (2022).
 ppA: ALICE, EPJA 59, 145 (2023). <u>theoretical studies</u>
 pd: Viviani et al., PRC 108 (2023) 064002.
 Ad: Haidenbauer, PRC 102 (2020); Kohno and Kamada, arXiv:2406.13899 (2024).

Ed: Ogata, Fukui, Kamiya, & Ohnishi (2021).

hyperon- α (⁴He) correlation function

2.50

2.25

2.00

1.75

1.50

1.25

0.75

0.50

0.25

 $Y\alpha$ correlation function is expected to elucidate further properties of YN (+YNN) interactions!

✓ <u>Two-body calculation is reasonable.</u>

 \checkmark Since the central density in α can reach $2\rho_0$, short range part of the YN (+ YNN) interaction could be probed. ✓ Enough statistics may be obtained at the <u>collision energy</u> $\sqrt{s_{NN}} < 10$ GeV. (HADES, FAIR, J-PARC-HI)

$\Lambda \alpha$ momentum correlation function

What is known/unknown for the $\Lambda \alpha$ system?

- Overall attraction is constrained from ⁵/_ΛHe (Λ+α) Λ binding energy: 3.12 MeV
 M. Juric, et al, NPB 52 (1973) 1-30.
- Interaction range ~ (α radius + 2 π exchange) ~ 2-3 fm
- <u>Short range behavior</u>, or repulsive core of ΛN (and ΛNN) is unknown, although it is important in discussing dense nuclear matter!
 - Λ binding energy in few-body hypernuclei (A < 10) is not sensitive. Motoba, Bando, Ikeda, & Yamada, Prog. Theor. Phys. 81 (1985) 42.
 - Weak decay width of the light Λ hypernuclei is well reproduced for repulsive core case. Kumagai-Fuse, Okabe, Akaishi, PLB345 (1995) 386.

Can $\Lambda \alpha$ correlation function

elucidate the short-range behavior?

$\Lambda \alpha$ potentials

We compare four models with different short-range behaviors.

• <u>Chi3, LY-IV</u>: Skyrme-type Λ potential substituting the density distribution in α

(Chi3: based on Chiral EFT with $\Lambda NN - \Sigma NN$, Gerstung, Kaiser, and Weise (2020))

(LY-IV: Lanskoy and Yamamoto (1997))

It is important to distinguish them to solve the hyperon puzzle of neutron stars.

- Both reproduce the Λ hypernuclear data
 AJ, K. Murase, Y. Nara, & A. Ohnishi, PRC 108 (2023) 065803.
- (note) One parameter is tuned to reproduce the Λ binding energy data of ${}^{5}_{\Lambda}$ He, -3.12 MeV.
- Isle, SG: conventional phenomenological models
 Kumagai-Fuse, Okabe, Akaishi, PLB345 (1995) 386.

(Result) $\Lambda \alpha$ correlation function

Difference among models is found at small momentum region!

Repulsive $\Lambda \alpha$ potential core leads to suppression in correlation function.

AJ, Y. Kamiya, T. Hyodo, and A. Ohnishi, arXiv: 2403.09126 (accepted by PRC)

$\Lambda \alpha$ correlation function (large sources)

- No difference is found for large sources ($R \gtrsim 3$ fm).
- LL formula $C_{LL}(q, a_0, r_{eff})$ well approximates the results.
- $\rightarrow a_0$ and $r_{\rm eff}$ do not differ enough to exhibit a difference.

Lednicky – Lyuboshits (LL) formula

Λα system demonstrates LL formula can deviate from Koonin-Pratt formula.

i.e. LL formula can be a good approximation only if $R \gg$ interaction range.

2-3 fm for $\Lambda \alpha$

AJ, Y. Kamiya, T. Hyodo, and A. Ohnishi, arXiv: 2403.09126 (accepted by PRC)

$\Xi \alpha$ momentum correlation function

ΞN interactions and $\Xi \alpha$ system

• **EN system has four channels in** *s* **wave.**

> From $p\Xi^-$ correlation function, the ${}^{11}S_0$ attraction is confirmed not enough to make the ΞN bound state.

• **Ea potential can reveal** ${}^{33}S_1$ **channel!** Relative strength in folding potential: $V({}^{11}S_0) + 3V({}^{13}S_1) + 3V({}^{31}S_0) + 9V({}^{33}S_1)$

• Binding energy of $\frac{5}{2}$ H ($\Xi^- + \alpha$) is under debate.

HAL QCD NE potential based folding potential 0.45 MeV

Hiyama, Isaka, Doi, and Hatsuda, Phys. Rev. C 106 (2022) 064318. Sasaki et al. [HAL QCD], Nucl. Phys. A 998 (2019) 121737.

Chiral NLO using no core shell model 2.16 MeV

H. Le, J. Haidenbauer, U.-G. Meißner, and A. Nogga, EPJA 57 (2021) 339. J. Haidenbauer. and U.-G. Meißner, EPJA 55 (2019) 23.

Unbound case also remains.

Let's discuss ΞN int. by $\Xi \alpha$ correlation function!

Kamiya et al., PRC 105 (2022) 014915.

$\Xi \alpha$ potentials

We employ the folding $\Xi \alpha$ potential based on the HAL QCD NE potential,

and two variations that correspond to the deeper and shallower binding cases.

17

$Ξ^0$ α correlation function (large source)

Difference among the three models is found clearly,

reflecting the bound state nature!

Y. Kamiya, AJ, T. Hyodo, and A. Ohnishi in preparation.

$\Xi^0\alpha$ correlation function (small source)

Dip structure is prominent for all models.

Dip structure reflects the repulsive core of the \Xi \alpha potential!

Small-source measurements may be useful to investigate the existence and strength of the repulsive core.

Y. Kamiya, AJ, T. Hyodo, and A. Ohnishi in preparation.

$\Xi^{-}\alpha$ correlation function (large source)

20

Y. Kamiya, AJ, T. Hyodo, and A. Ohnishi in preparation.

Summary

We investigated $\Lambda \alpha$ and $\Xi \alpha$ correlation function to reveal further properties of hyperon-nucleon interactions.

- > We compare phenomenological $\Lambda \alpha$ potentials with <u>different strength at short range.</u>
- > Difference among models is found for <u>small size source</u>. (e.g. *pA* collision for $\sqrt{s_{NN}} < 10$ GeV (J-PARC HI, FAIR, NICA) ?)
- > We verify that the <u>Lednicky-Lyuboshits formula can yield erroneous results</u> for a small source size with a potential that has large interaction range, like the $\Lambda \alpha$ system.

Example 1 $\underline{\alpha}$ correlation function $\cdot \cdot \cdot$ for ΞN two-body interactions

- > We employ the folding potential from HAL QCD EN potential, and their variations.
- > Both $\Xi^0\alpha$ and $\Xi^-\alpha$ correlation functions are <u>sensitive to their bound state property</u>.
- > The strength of the <u>repulsive core</u> could be accessed by the <u>small-size source</u>. We have to discuss...
- \succ the treatment of α as a point-like particle for small source size.
- > the validity of the assumption of chaotic source for $\sqrt{s_{NN}} < 10$ GeV. (e.g. by JAM + coalescence)