HADRONIC τ DATA AND LATTICE QCD+QED SIMULATIONS FOR THE MUON (g-2)

Mattia Bruno work in collab. with T. Izubuchi, C. Lehner, A. Meyer, X. Tuo for the RBC/UKQCD collaborations

Seventh plenary workshop of the muon g-2 theory initiative KEK, Japan, September 10th

<u>Boston University</u> Nobuyuki Matsumoto

BNL and BNL/RBRC

Peter Boyle Taku Izubuchi Christopher Kelly Shigemi Ohta (KEK) Amarji Soni Masaaki Tomii Xin-Yu Tuo Shuhei Yamamoto

University of Cambridge

Nelson Lachini

CERN

Matteo Di Carlo Felix Erben Andreas Jüttner (Southampton) Tobias Tsang

Columbia University

Norman Christ Sarah Fields Ceran Hu Yikai Huo Joseph Karpie (JLab) Erik Lundstrum Bob Mawhinney Bigeng Wang (Kentucky)

University of Connecticut

Tom Blum Jonas Hildebrand

The RBC & UKQCD collaborations

Luchang Jin Vaishakhi Moningi Anton Shcherbakov Douglas Stewart Joshua Swaim

DESY Zeuthen

Raoul Hodgson

Edinburgh University

Luigi Del Debbio Vera Gülpers Maxwell T. Hansen Nils Hermansson-Truedsson Ryan Hill Antonin Portelli Azusa Yamaguchi

Johannes Gutenberg University of Mainz Alessandro Barone

Liverpool Hope/Uni. of Liverpool Nicolas Garron

LLNL Aaron Meyer

<u>Autonomous University of Madrid</u> Nikolai Husung

<u>University of Milano Bicocca</u> Mattia Bruno <u>Nara Women's University</u> Hiroshi Ohki

Peking University

Xu Feng Tian Lin

University of Regensburg

Andreas Hackl Daniel Knüttel Christoph Lehner Sebastian Spiegel

RIKEN CCS

Yasumichi Aoki

University of Siegen

Matthew Black Anastasia Boushmelev Oliver Witzel

University of Southampton

Bipasha Chakraborty Ahmed Elgaziari Jonathan Flynn Joe McKeon Rajnandini Mukherjee Callum Radley-Scott Chris Sachrajda

Stony Brook University

Fangcheng He Sergey Syritsyn (RBRC)

イロト イボト イヨト イヨト

 $(g-2)_{\mu}_{\rm Lattice}$

Hadronic Vacuum Polarization (HVP) contribution to a_{μ}

Lattice

 $\begin{array}{ll} \mbox{Time-momentum representation} & \mbox{[Bernecker, Meyer, '11]} \\ G^{\gamma}(t) = \frac{1}{3} \sum_{k} \int d\vec{x} \ \langle j_{k}^{\gamma}(x) j_{k}^{\gamma}(0) \rangle & \rightarrow & a_{\mu} = 4\alpha^{2} \sum_{t} w_{t} G^{\gamma}(t) \\ \end{array}$

Windows in Euclidean time

[RBC/UKQCD '18]

A D F A B F A B F A B F

 $\begin{array}{l} a^W_\mu = 4\alpha^2 \sum_t w_t \, G^\gamma(t) \left[\Theta(t,t_0,\Delta) - \Theta(t,t_1,\Delta)\right] \\ t_0 = 0.4 \ \mathrm{fm} \quad t_1 = 1.0 \ \mathrm{fm} \quad \Delta = 0.15 \ \mathrm{fm} \end{array}$

Hadronic Vacuum Polarization (HVP) contribution to a_{μ}

Dispersive

$$a_{\mu} = \frac{\alpha}{\pi} \int \frac{ds}{s} K(s, m_{\mu}) \frac{\text{Im}\Pi(s)}{\pi} \qquad [\text{Brodsky, de Rafael '68]}$$

$$\text{Im} \sqrt{\left(\frac{1}{s}\right)} \sqrt{\frac{1}{s}} \left| \sqrt{\sqrt{s}} x \right|^{2} \frac{4\pi^{2}\alpha}{s} \frac{\text{Im}\Pi(s)}{\pi} = \sigma_{e^{+}e^{-} \rightarrow \gamma^{\star} \rightarrow \text{had}}$$

Windows can be estimated dispersively as well and compared

$\underset{\tau \text{ decays}}{\text{MOTIVATIONS}}$

V - A current Final states I = 1 charged

au data can improve $a_{\mu}[\pi\pi]$ o 72% of total Hadronic LO

 \rightarrow competitive precision on a^W_{μ}

< □ > < □ > < □ > < □ > < □ >

HADRONIC au DECAYS Fermi theory

$$\mathcal{M}_{f}(P,q,p_{1}\cdots p_{n_{f}}) = \frac{G_{\mathrm{F}}V_{\mathrm{ud}}}{\sqrt{2}} \,\bar{u}_{\nu}(-q)\gamma_{\mu}^{L}u_{\tau}(P)\,\langle \mathrm{out},p_{1}\cdots p_{n_{f}}|\mathcal{J}_{\mu}^{-}(0)|0\rangle$$

$$d\Gamma = \frac{1}{4m}d\Phi_{q}\sum_{f}d\Phi_{f}\sum_{\mathrm{spin}}|\mathcal{M}_{f}|^{2}$$

$$= \frac{1}{4m}d\Phi_{q}\frac{G_{\mathrm{F}}^{2}|V_{\mathrm{ud}}|^{2}}{2}\mathcal{L}_{\mu\nu}(P,q)\,\rho_{\mu\nu}^{\mathsf{w}}(p)$$

Charged spectral density isospin limit = $\rho^{w,0}$ $\left[d\Phi_q = \frac{d^3q}{(2\pi)^3 2\omega_q} \right]$

$$\begin{aligned} \frac{d\Gamma(s)}{ds} &= G_{\rm F}^2 |V_{\rm ud}|^2 \frac{m^3}{16\pi^2} \left(1 + \frac{2s}{m^2}\right) \left(1 - \frac{s}{m^2}\right)^2 \rho^{\rm w,0}(s) \\ &= G_{\rm F}^2 |V_{\rm ud}|^2 \frac{m^3}{16\pi^2} \,\kappa(s) \,\rho^{\rm w,0}(s) \end{aligned}$$

ECOCCA ECOCCA ECOCCA

イロト イヨト イヨト イヨト

ELECTRONIC RATE Eliminating $G_{\rm F}$

from experiment we get
$$\frac{1}{\Gamma} \frac{d\Gamma}{ds} \rightarrow \frac{\Gamma}{\Gamma_e} \frac{1}{\Gamma} \frac{d\Gamma}{ds} = \frac{1}{\Gamma_e} \frac{d\Gamma}{ds}$$

 $\Gamma_e = \Gamma(\tau \rightarrow e\overline{\nu}\nu) = \frac{\mathcal{B}_e\Gamma}{\mathcal{B}} = \frac{G_F^2 m_\tau^5}{192\pi^3}$
conventionally $\rho^{w,0}(s) = \frac{m_\tau^2}{12\pi^2 |V_{ud}|^2 \kappa(s)} \times \frac{\mathcal{B}}{\mathcal{B}_e} \times \frac{1}{\Gamma} \frac{d\Gamma}{ds}$

$$\begin{split} O(\alpha) \text{ correction fo } \Gamma_e \text{ finite in Fermi theory} & [\text{Kinoshita, Sirlin '59}] \\ \Gamma_e &= \frac{G_F^2 m_\tau^5}{192\pi^3} \Big[1 + \frac{\alpha}{2\pi} \Big(\frac{25}{4} - \pi^2 \Big) \Big] \Big[1 + O(m_W^2/m_\tau^2) + O(m_e^2/m_\tau^2) \Big] \\ &\rightarrow 0.4\% \text{ correction} & \text{SDEG} \end{split}$$

W REGULARIZATION

Short-distance effects

イロト イポト イヨト イヨト

[Sirlin '82][Marciano, Sirlin '88][Braaten, Li '90]

Effective Hamiltonian $H_W \propto G_F O_{\mu\nu}$ G_F low-energy constant; 4-fermion operator $O_{\mu\nu}$

At $O(\alpha)$ new divergences in EFT \rightarrow need regulator, Z factors

 $\frac{1}{k^2} = \frac{1}{k^2 - m_W^2} - \frac{m_W^2}{k^2(k^2 - m_W^2)}$

[Sirlin '78]

1. universal UV divergences re-absorbed in $G_{\rm F}$

2. process-specific corrections in ${\cal S}_{EW}$, like a ${\cal Z}$ factor

Effective Hamiltonian at $O(\alpha)$: $H_W \propto G_F S_{EW}^{1/2} O_{\mu\nu}$ matching required as noted by [Carrasco et al '15][Di Carlo et al '19]

ISOSPIN BREAKING

Initial state

Wave-function renormalization

$$Z_{\tau} = 1 + \frac{\alpha}{2\pi} \left[\log \frac{m_{\tau}}{\mu} + 2 \log \frac{m_{\gamma}}{m_{\tau}} + \cdots \right]$$
$$\frac{d\Gamma}{ds} \simeq 2 \times \frac{1}{2} [Z_{\tau} - 1] |\mathcal{M}|^2$$
$$\delta Z_{\tau} \equiv \frac{\alpha}{2\pi} \log(m_W/m_{\tau}) \qquad \text{[Sirlin '82]}$$

 τ Bremsstrahlung

$$\frac{d\Gamma}{ds} \frac{\alpha}{\pi} [G_{\log}(s, m_{\gamma}) + \dots]$$

$$G_{\log}(s, m_{\gamma}) = \log \frac{m_{\gamma}}{m_{\tau}} + \cdots$$

$$\delta \kappa(s) \equiv G_{\log}(s, m_{\tau}) + \dots$$

[Cirigliano et al '00, '01][MB et al, in prep]

ISOSPIN BREAKING

Initial-final state

Virtual photon loop

 $au - \pi$ bremsstrahlung interfence From EFT and 2π [Cirigliano et al' 00, '01] Structure-independent captured by EFT Structure-dependent meson dominance [Flores-Talpa et al. '06, '07]

8/16

LONG-DISTANCE CORRECTIONS

 $\delta\kappa$ is channel and m_{γ} independent [MB et al, in prep] $\Delta_{\kappa\rho} \rightarrow 2\pi$, point-like, m_{γ} independent [Cirigliano et al '01, '02]

< 日 > < 同 > < 三 > < 三)

^{10/16}

DI MILANO

ISOSPIN BREAKING Strategy

- 1. take experimental $d\Gamma/ds$ (e.g. Aleph13, Belle08, Bellell ?)
- 2. $\delta\kappa$ initial state corrections: analytic, under control

4. define
$$\delta\Gamma_{EM}\equiv\delta\kappa(s)+\Delta_{\kappa\rho}(s)$$
 and calculate:

$$\frac{m_{\tau}^2}{12\pi^2 G_{\rm F}^2 |V_{\rm ud}|^2 \kappa(s)} \frac{1}{S_{EW}} \frac{1}{1 + \frac{\alpha}{\pi} \delta \Gamma_{EM}(s)} \Big[\frac{\mathcal{B}_e}{\mathcal{B}} \frac{1}{\Gamma} \frac{d\Gamma}{ds} \Big]_{\rm exp} = \rho^{\rm w,0}(s) + \delta \rho(s)_{\rm DEGLISTUDE} \begin{bmatrix} \mathcal{B}_e & \mathcal{B}_e \\ \mathcal{B}_e & \mathcal{B$$

ISOSPIN BREAKING Final state

FIRST RESULTS

Connected strong-isospin breaking

Ideas from stochastic locality [Lüscher '17][RBC/UKQCD '23][MB, Cé et al '23]

r = spatial separation vector

and mass operators

 t^4 interm. window

Leading isospin-breaking

[preliminary 96I]

6

DEGLI STUDI

NIVERSI

DI MILANC

14/16

t^4 intermediate window

WHAT'S NEXT

Lattice is fully inclusive...

Lattice calculation fully inclusive in energy (cut at $m_{ au}$) and channels

 $\stackrel{(\frown)}{\longrightarrow} \rightarrow \text{isospin-breaking from both } 2\pi \text{ and } 3\pi$ [Colangelo et al 22][Hofericther et al '23] $\text{IB correction of } a^W[3\pi] \approx -1 \cdot 10^{-10}, \ a^W[2\pi] \approx +1 \cdot 10^{-10}$

Possibilities for τ -data + LQCD: (A) fully inclusive vs (B) 2π exclusive

CONCLUSIONSand outlooks

hadronic τ -decays can shed light on tension lattice vs e^+e^-

 τ data competitive on intermediate window

blinded analysis of Aleph

initial+mixed rad.cors. analytic

final radiative from LQCD+QED

イロト イポト イヨト イヨト

Remaining work (in progress) to finalize full formalism [MB et al, in prep] W-regularization and short-distance corrections non-factorizable effects: beyond EFT?

Thanks for your attention

DEFINITIONS

イロト イヨト イヨト イヨト

Hadronic currents

$$\begin{split} \mathcal{J}^{\gamma}_{\mu} &= Q_{\mathrm{u}} \overline{u} \gamma_{\mu} u + Q_{\mathrm{d}} \overline{d} \gamma_{\mu} d \\ \mathcal{J}^{-}_{\mu} &= \overline{u} \gamma_{\mu} d \,, \quad \mathcal{J}^{1}_{\mu} = \frac{Q_{\mathrm{u}} - Q_{\mathrm{d}}}{\sqrt{2}} \overline{u} \gamma_{\mu} d \end{split}$$

Hadronic phase-space factor, \boldsymbol{i} labels hadrons

$$d\Phi_f(p) \equiv (2\pi)^4 \delta^4(p - \sum_i p_i) S_f \prod_i \frac{d^3 p_i}{(2\pi)^3 2\omega_i}$$

Charged spectral densities

$$\rho_{\mu\nu}^{\mathsf{w}}(p) = \frac{1}{2\pi} \int d^4x \, e^{ipx} \, \langle 0|\mathcal{J}_{\mu}^+(x) \, \mathcal{J}_{\nu}^-(0)|0\rangle
= \frac{1}{2\pi} \sum_f \int d\Phi_f \, \langle 0|\mathcal{J}_{\mu}^+(0)|p_1\cdots, \mathrm{out}\rangle \langle p_1\cdots, \mathrm{out}|\mathcal{J}_{\nu}^-(0)|0\rangle
= (p^2 g_{\mu\nu} - p_{\mu} p_{\nu}) \, \rho^{\mathsf{w}}(s) \qquad [s = p^2]$$

Sparse propagators

Save on disk sparse props \rightarrow efficient, more point sources[RBC/UKQCD '18] side effects? observable dependent, we tested vector correlator

Error breakdown

コトスロトメヨトメヨト

PHASE SPACE

A numerical *n*-particle phase-space integrator Grid/GPT backend, support for several parallelization schemes partial support for 1-loop Passarino-Veltman functions no support for MCMC yet (needed for >=6 particles) currently private, soon public github.com/mbruno46

Used to cross-check analytic formulae Example: Dalitz plot τ Bremsstrahlung \rightarrow wrong boundary: finite m_{γ} effects

A D N A B N A B N A

