# Hadronic light-by-light contribution to the magnetic moment of the muon from lattice QCD: status of Mainz calculations

Harvey Meyer Johannes Gutenberg University Mainz

Seventh plenary workshop of the muon g-2 Theory Initiative, KEK, Tsukuba, 12 September 2024







Established by the European Commission

#### Source of dominant uncertainties in SM |



Hadronic vacuum polarisation

HVP:  $O(\alpha^2)$ , about  $700 \cdot 10^{-10}$ WP20 precision: 0.6%Desirable precision: 0.2%



Hadronic light-by-light scattering

HLbL:  $O(\alpha^3)$ , about  $10 \cdot 10^{-10}$ WP20 precision: 20%. Desirable precision: 10%.



#### **Selected literature**

- 1. Hayakawa, Blum, Izubuchi, Yamada hep-lat/0509016 (LAT'05, Dublin); 1407.2923.
- 2. Blum et al. 1510.0710; 1610.0460; **1911.0812** (results with QED in finite volume);
- 3. Blum et al. 1705.0106 (QED in infinite volume, tested on free quark loop computed on the lattice); Blum et al. **2304.04423** (results);
- 4. Mainz group conference proceedings: 1510.08384, 1609.08454, 1711.02466, 1801.04238, 1811.08320, 1911.05573.
- Mainz group: 2006.16224 (at SU(3)<sub>f</sub> symmetric point); 2104.02632 (extrapolating to physical quark masses); 2204.08844 (charm contribution).
- Mainz QED kernel: 2210.12263. Available at https://github.com/RJHudspith/KQED
- 7. 2311.10628 & Lattice'24 Zimmermann, Gérardin; Lattice'24 Kanwar, Petschlies, Kalntis, Romiti, Wenger (ETMC).

#### Coordinate-space approach to $a_{\mu}^{\text{HLbL}}$



- on-shell muon momentum realized as  $p = (iE_p, p)$ . Simplest choice p = (im, 0).
- $\mathcal{L}_{[\rho,\sigma];\mu\nu\lambda}(p,x,y)$  computed in the continuum & infinite-volume
- no power-law finite-volume effects.

## Coordinate-space approach to $a_{\mu}^{\mathrm{HLbL}}\text{:}$ version used by Mainz



only a 1d integral to sample the integrand in |y| thanks to analytic average over muon momentum.

[Asmussen, Gérardin, Green, HM, Nyffeler 1510.08384.]

#### Notation: connection between RBC/UKQCD and Mainz

$$\mathfrak{G}_{\mu\nu\lambda}^{\mathrm{RBC}}(x,y,z) = (-i)\frac{1+\gamma_0}{2}K_{\mu\nu\lambda}^{\mathrm{Mainz}}(p=(im,\mathbf{0}), x-z, y-z)\frac{1+\gamma_0}{2}$$
$$\frac{i}{4}\operatorname{Tr}\{[\gamma_{\rho},\gamma_{\sigma}]\mathfrak{G}_{\mu\nu\lambda}^{\mathrm{RBC}}(x,y,0)\} = \mathcal{L}_{[\rho,\sigma];\mu\nu\lambda}^{\mathrm{Mainz}}(p=(im,\mathbf{0}), x, y).$$
$$6i\int d^4x_{\mathrm{op}} (x_{\mathrm{op}} - x_{\mathrm{ref}})_j \mathcal{H}_{k,\rho,\sigma,\lambda}^{\mathrm{RBC}}(x_{\mathrm{op}}, x, y, z) = \widehat{\Pi}_{j;\rho\sigma\lambda k}^{\mathrm{Mainz}}(x-z, y-z)$$

This should make it possible to describe the various lattice calculations in a single notation in the White Paper.

RBC/UKQCD 2304.04423 vs. Mainz 2210.12263

Isospin decomposition vs. quark-level Wick contractions

$$V^{\rm e.m.} = V^3 + V^8, \quad V^3 = \frac{1}{2}(\bar{u}\gamma u - \bar{d}\gamma d), \quad V^8 = \frac{1}{6}(\bar{u}\gamma u + \bar{d}\gamma d - 2\bar{s}\gamma s)$$

$$\begin{split} \Pi^{\text{HLbL}} &= \langle V_{X_1}^{\text{e.m.}} V_{X_2}^{\text{e.m.}} V_{X_3}^{\text{e.m.}} V_{X_4}^{\text{e.m.}} \rangle, \\ \Pi^{\{3333\}} &= \langle V_{X_1}^3 V_{X_2}^3 V_{X_3}^3 V_{X_4}^3 \rangle, \\ \Pi^{\{8888\}} &= \langle V_{X_1}^3 V_{X_2}^3 V_{X_3}^3 V_{X_4}^3 \rangle \\ \Pi^{\{3838\}} &= \frac{1}{2!2!} \sum_{\mathcal{P} \in \mathcal{S}_4} \langle V_{X_{\mathcal{P}(1)}}^8 V_{X_{\mathcal{P}(2)}}^3 V_{X_{\mathcal{P}(3)}}^8 V_{X_{\mathcal{P}(4)}}^3 \rangle, \end{split}$$

$$\Pi^{\rm HLbL} = \Pi^{\{3333\}} + \Pi^{\{8888\}} + \Pi^{\{3838\}}.$$

Wick-contraction topologies in HLbL amplitude  $\langle 0|T\{j_x^{\mu}j_y^{\nu}j_z^{\lambda}j_0^{\sigma}\}|0\rangle$ 



#### Charge factors of the quark-level diagrams

In the (u, d) quark sector, the five diagram classes appear with the following the charge factors:

|                            | $\Pi^{(4)}$     | $\Pi^{(2,2)}$   | $\Pi^{(3,1)}$   | $\Pi^{(2,1,1)}$ | $\Pi^{(1,1,1,1)}$ |
|----------------------------|-----------------|-----------------|-----------------|-----------------|-------------------|
| $\Pi^{\{3333\}}$           | $\frac{1}{8}$   | $\frac{1}{4}$   | 0               | 0               | 0                 |
| $\Pi^{\{8888\}}$           | $\frac{1}{648}$ | $\frac{1}{324}$ | $\frac{1}{324}$ | $\frac{1}{162}$ | $\frac{1}{81}$    |
| $\Pi^{\{3838\}}$           | $\frac{1}{12}$  | $\frac{1}{18}$  | $\frac{1}{12}$  | $\frac{1}{18}$  | 0                 |
| Total: $\Pi^{\text{HLbL}}$ | $\frac{17}{81}$ | $\frac{25}{81}$ | $\frac{7}{81}$  | $\frac{5}{81}$  | $\frac{1}{81}$    |

e.g. the set of fully connected diagrams  $\Pi^{(4)}$  appears with charge factor  $((\frac{2}{3})^4 + (-\frac{1}{3})^4) = \frac{17}{81}$  in the HLbL amplitude.

#### Exchange of an isovector meson $(\pi^0, ...)$

The  $\pi^0$  exchange (or of any other isovector meson) appears only in  $\Pi^{3388}$ . The fact that it vanishes in  $\Pi^{3333}$  implies the ratio

$$\left[\frac{25}{81}\Pi^{(2,2;\pi^0)}\right] = -\frac{25}{34} \left[\frac{17}{81}\Pi^{(4,\pi^0)}\right].$$
 (1)

Neglecting the diagrams containing three quark loops or more, the contribution  $\Pi^{\rm HLbL;\pi^0}$  to HLbL amplitude is partitioned according to

$$\begin{bmatrix} \frac{17}{81} \Pi^{(4;\pi^0)} \end{bmatrix} = \frac{34}{9} \Pi^{\text{HLbL};\pi^0},$$
$$\begin{bmatrix} \frac{25}{81} \Pi^{(2,2;\pi^0)} \end{bmatrix} = -\frac{25}{9} \Pi^{\text{HLbL};\pi^0}$$

First derived by J. Bijnens, 1608.01454.

Similarly, for an isoscalar meson exchange (say,  $(f_2)$ ): if you assume that the meson couples equally to a pair  $(V^3_\mu, V^3_\nu)$  as to the pair  $(3V^8_\mu, 3V^8_\nu)$ , then you find that its entire contribution to  $\Pi^{\text{HLbL}}$  is contained in  $\left[\frac{25}{81}\Pi^{(2;\pi^0)}\right]$ .

See 1712.00421.

#### The charged pion loop

#### At leading order in ChPT, the charged pion loop appears only in $\Pi^{\{3333\}}$ .

From this observation, neglecting the diagrams containing three quark loops or more, one finds that the charged pion loop contribution  $\Pi^{\rm HLbL;\pi\pi}$  to HLbL amplitude is partitioned across  $\Pi^{(4)}, \Pi^{(2,2)}$  and  $\Pi^{(3,1)}$  diagrams according to

$$\begin{bmatrix} \frac{17}{81} \Pi^{(4;\pi\pi)} \end{bmatrix} = \frac{34}{81} \Pi^{\text{HLbL};\pi\pi},$$
$$\begin{bmatrix} \frac{25}{81} \Pi^{(2,2;\pi\pi)} \end{bmatrix} = \frac{75}{81} \Pi^{\text{HLbL};\pi\pi},$$
$$\begin{bmatrix} \frac{7}{81} \Pi^{(3,1;\pi\pi)} \end{bmatrix} = -\frac{28}{81} \Pi^{\text{HLbL};\pi\pi}$$

See 2104.02632 apdx A for a partially quenched ChPT derivation.

#### Integrand of connected contribution at $m_{\pi} = 200 \text{ MeV}$



- Semi-quantitative description of the integrand;
- Cutoff effects at short distances.

#### 2104.02632



Chiral & continuum limit linear in  $m_\pi^2$  and  $a^2$  for the  $(Q_u^4 + Q_d^4)\Pi^{(4)} + (Q_u^2 + Q_d^2)^2\Pi^{(2,2)}$  contribution.

2104.02632



**Figure 8:** Red lines: original tail-reconstructed data. Black lines: with  $\pi^0$ -exchange computed on each ensemble individually subtracted and the continuum value added back at the physical pion mass. The dotted lines and dashed lines correspond to finite  $m_{\pi}L$  (see Fig. 3) and infinite  $m_{\pi}L$  at fixed  $\beta = 3.4$  respectively and the plain lines are the results in the continuum and infinite-volume limit. The data point at the top left corner corresponds to our quoted final estimate for  $a_{\mu}^{hbl}$ .

E.-H. Chao, LAT21.

#### **Overview table**

| Contribution                              | $Value \times 10^{11}$ |  |  |
|-------------------------------------------|------------------------|--|--|
| Light-quark fully-connected and $(2+2)$   | 107.4(11.3)(9.2)(6.0)  |  |  |
| Strange-quark fully-connected and $(2+2)$ | -0.6(2.0)              |  |  |
| (3+1)                                     | 0.0(0.6)               |  |  |
| (2+1+1)                                   | 0.0(0.3)               |  |  |
| (1+1+1+1)                                 | 0.0(0.1)               |  |  |
| Total                                     | 106.8(15.9)            |  |  |

error dominated by the statistical error and the continuum limit.

all subleading contributions have been tightly constrained and shown to be negligible.

[Chao et al, 2104.02632]

Result for charm:  $a_{\mu}(\text{charm}) = (2.8 \pm 0.5) \times 10^{-11}$ .

## Compilation of $a_{\mu}^{\mathrm{HLbL}}$ determinations



Good consistency of different determinations. Lattice'24:  $a_{\mu}^{\rm HbL} = 12.6(1.2)(3) \cdot 10^{-10}$  (Ch. Zimmermann, BMW).

Results from the Bern dispersive framework and from three independent lattice QCD calculations since 2021 are in agreement with comparable uncertainties.

### How best to combine the lattice results for $a_{\mu}^{\mathrm{HLbL}}$

The statistical errors of different calculations are uncorrelated (except e.g. for the charm contribution if it is taken from the Mainz calculation).

Dominant systematic errors:

- Continuum limit needs to be consolidated; how strongly does the slope in  $a^2$  depend on the quark mass?
- Treatment of long-distances is based on the same idea that the π<sup>0</sup> exchange dominates.
- Fit ansätze for the  $m_{\pi}$  dependence related to the same physics.

Thus it is not clear that one can do better than treating the systematic error as being 100% correlated across different calculations.

# **Backup slides**

#### The charm contribution at the $SU(3)_f$ point



Integrand for the connected charm contribution (J500, a = 0.039 fm) direct calculation at physical charm mass difficult due to lattice artefacts  $\rightarrow \rightarrow \text{perform a combined extrapolation in } 1/m_c^2 \text{ and the lattice spacing.}$ Chao, Hudspith, Gérardin, Green, HM arXiv:2204.08844

#### Extrapolation in charm mass and lattice spacing



This particular fit:

$$a_{\mu}(a, m_{\eta_c}) = Aa + \frac{B + Ca^2}{m_{\eta_c}^2} + Da^2 + E \frac{a^2}{m_{\eta_c}^4}$$

Final result (average of several fits):  $a_{\mu}(\text{charm}) = (2.8 \pm 0.5) \times 10^{-11}$ .

# Truncated integral for $a_{\mu}^{\rm HLbL}$



- Extend reach of the signal by two-param. fit  $f(y) = A|y|^3 \exp(-M|y|)$ ;
- provides an excellent description of the  $\pi^0$  exchange contribution in infinite volume.
- We see a clear increase of the magnitude of both connected and disconnected contributions.

#### Chiral, continuum, volume extrapolation



 $a_{\mu}^{\rm HLbL}$  at  $m_{\pi}=m_K\simeq 415~$  MeV: continuum limit [Chao, Gérardin, Green, Hudspith, HM 2006.16224 (EPJC)]



$$a_{\mu}^{\text{hlbl,SU(3)}_{\text{f}}} = (65.4 \pm 4.9 \pm 6.6) \times 10^{-11}$$

#### Rearrangement of integrals: 'method 2'

For the fully-connected calculation we use the following master equation for the integrand:

$$f^{(\text{Conn.})}(|y|) = -\sum_{j \in u,d,s} \hat{Z}_{V}^{4} Q_{j}^{4} \frac{m_{\mu}e^{6}}{3} 2\pi^{2} |y|^{3} \times \int_{z} \mathcal{L}_{[\rho,\sigma]\mu\nu\lambda}^{(1),j}(x,y,z) + \bar{\mathcal{L}}_{[\rho,\sigma];\lambda\nu\mu}^{(\Lambda)}(x,x-y) x_{\rho} \int_{z} \widetilde{\Pi}_{\mu\nu\sigma\lambda}^{(1),j}(x,y,z) dx + \mathcal{L}_{[\rho,\sigma];\lambda\nu\mu}^{(\Lambda)}(x,x-y) x_{\rho} \int_{z} \widetilde{\Pi}_{\mu\nu\sigma\lambda}^{(1),j}(x,y,z) dx + \mathcal{L}_{[\rho,\sigma];\lambda\nu\mu}^{(\Lambda)}(x,y,z) dx + \mathcal{L}_{[\rho,\sigma];\lambda\mu}^{(\Lambda)}(x,y,z) dx +$$

with hadronic contribution

$$\widetilde{\Pi}^{(1),j}_{\mu\nu\sigma\lambda}(x,y,z) = -2\mathsf{Re}\left\langle \mathrm{Tr}\left[S^{j}(0,x)\gamma_{\mu}S^{j}(x,y)\gamma_{\nu}S^{j}(y,z)\gamma_{\sigma}S^{j}(z,0)\gamma_{\lambda}\right]\right\rangle_{U}.$$

- ▶  $S^{j}(x, y)$  is the flavour *j*-quark propagator from source *y* to sink *x*;
- $Q_j$  is the charge factor  $(Q_u = \frac{2}{3}, Q_d = -\frac{1}{3}, Q_s = -\frac{1}{3});$
- $\triangleright$   $\langle \cdot \rangle_U$  denotes the ensemble average.

$$\mathcal{L}'_{[\rho,\sigma];\mu\nu\lambda}(x,y) = \bar{\mathcal{L}}^{(\Lambda)}_{[\rho,\sigma];\mu\nu\lambda}(x,y) + \bar{\mathcal{L}}^{(\Lambda)}_{[\rho,\sigma];\nu\mu\lambda}(y,x) - \bar{\mathcal{L}}^{(\Lambda)}_{[\rho,\sigma];\lambda\nu\mu}(x,x-y).$$

# HLbL & the projection formula

$$a_{\mu}^{\text{HLbL}} = F_2(0) = \frac{-i}{48m} \operatorname{Tr}\{[\gamma_{\rho}, \gamma_{\sigma}](-i\not\!\!p + m)\Gamma_{\rho\sigma}(p, p)(-i\not\!\!p + m)\}\Big|_{p^2 = -m^2}$$

The HLbL contribution to the vertex function reads

$$\begin{split} \Gamma_{\rho\sigma}(p',p) &= -e^{6} \int_{q_{1},q_{2}} \frac{1}{q_{1}^{2} q_{2}^{2} (q_{1}+q_{2}-k)^{2}} \frac{1}{(p'-q_{1})^{2}+m^{2}} \frac{1}{(p'-q_{1}-q_{2})^{2}+m^{2}} \\ &\times \Big(\gamma_{\mu}(ip'-iq_{1}-m)\gamma_{\nu}(ip'-iq_{1}-iq_{2}-m)\gamma_{\lambda}\Big) \\ &\times \frac{\partial}{\partial k_{\rho}} \Pi_{\mu\nu\lambda\sigma}(q_{1},q_{2},k-q_{1}-q_{2}), \\ \Pi_{\mu\nu\lambda\rho}(q_{1},q_{2},q_{3}) &= \int_{x,y,z} e^{-i(q_{1}\cdot x+q_{2}\cdot y+q_{3}\cdot z)} \Big\langle j_{\mu}(x)j_{\nu}(y)j_{\lambda}(z)j_{\rho}(0) \Big\rangle_{\text{QCD}}. \end{split}$$

Harvey Meyer HLbL in  $(g-2)_{\mu}$  from Lattice QCD

#### Transition to a Euclidean coordinate-space representation

Interchange the integrals over momenta and positions:

$$\Gamma_{\rho\sigma}(p,p) = -e^6 \int_{x,y} K_{\mu\nu\lambda}(p,x,y) \widehat{\Pi}_{\rho;\mu\nu\lambda\sigma}(x,y),$$

with the QED kernel

$$\begin{split} K_{\mu\nu\lambda}(p,x,y) &= \gamma_{\mu}(i\not\!\!\!p + \not\!\!d^{(x)} - m)\gamma_{\nu}(i\not\!\!\!p + \not\!\!d^{(x)} + \not\!\!d^{(y)} - m)\gamma_{\lambda}\mathcal{I}(p,x,y)_{\mathrm{IR reg.}}, \\ \mathcal{I}(p,x,y)_{\mathrm{IR reg.}} &= \int_{q,k} \frac{1}{q^2 \,k^2 \,(q+k)^2} \, \frac{1}{(p-q)^2 + m^2} \, \frac{1}{(p-q-k)^2 + m^2} \, e^{-i(q\cdot x + k \cdot y)} \,. \end{split}$$

and

$$\widehat{\Pi}_{\rho;\mu\nu\lambda\sigma}(x,y) = \int_{z} i z_{\rho} \left\langle j_{\mu}(x) j_{\nu}(y) j_{\sigma}(z) j_{\lambda}(0) \right\rangle_{\text{QCD}}$$

An infrared divergence in the scalar function  ${\cal I}$  cancels out upon evaluating the Dirac trace and the derivatives.

#### Simplifying the trace...

$$a_{\mu}^{\mathrm{HLbL}} = \frac{me^{6}}{3} \int_{x,y} \mathcal{L}_{[\rho,\sigma];\mu\nu\lambda}(p,x,y) \ i\widehat{\Pi}_{\rho;\mu\nu\lambda\sigma}(x,y),$$

with the QED kernel given by

$$\mathcal{L}_{[\rho,\sigma];\mu\nu\lambda}(p,x,y) = \frac{1}{16m^2} \operatorname{Tr}\left\{(-i\not\!\!p+m)[\gamma_{\rho},\gamma_{\sigma}](-i\not\!\!p+m)K_{\mu\nu\lambda}(p,x,y)\right\}$$

But what about p, the muon momentum, in Euclidean space?

On-shell muon:  $p = (iE_{p}, p)$ .

Simplest choice: p = (im, 0), or more generally  $p = im\hat{\epsilon}$ ,  $\epsilon$  a unit vector.

#### $N_{\rm f}=2+1~{\rm CLS}$ ensembles used towards physical quark masses

|      | (4)  | (22) | (31) | (211) | (1111) | β    | $(a \text{ GeV})^2$ | $\left(\frac{m_{\pi}}{\text{GeV}}\right)^2$ | $(\frac{m_K}{\text{GeV}})^2$ | $m_{\pi}L$ | $\hat{Z}_{V}$ |
|------|------|------|------|-------|--------|------|---------------------|---------------------------------------------|------------------------------|------------|---------------|
| A653 | l, s | l, s | 0    | 0     | 0      | 2.24 | 0.2532              | 0.171                                       | 0.171                        | 5.31       | 0.70351       |
| A654 | l, s | l, s | l    |       |        | 5.54 | 0.2532              | 0.107                                       | 0.204                        | 4.03       | 0.69789       |
| U103 | l, s | l, s | 0    | 0     | 0      |      | 0.1915              | 0.172                                       | 0.172                        | 4.35       | 0.71562       |
| H101 | l, s | l, s | 0    | 0     | 0      |      | 0.1915              | 0.173                                       | 0.173                        | 5.82       | 0.71562       |
| U102 | l    | l    | l    |       |        | 3.40 | 0.1915              | 0.127                                       | 0.194                        | 3.74       | 0.71226       |
| H105 | l, s | l, s | l, s |       |        |      | 0.1915              | 0.0782                                      | 0.213                        | 3.92       | 0.70908       |
| C101 | l, s | l, s | l, s | l     | l, s   |      | 0.1915              | 0.0488                                      | 0.237                        | 4.64       | 0.70717       |
| B450 | l, s | l, s | 0    | 0     | 0      | 2.46 | 0.1497              | 0.173                                       | 0.173                        | 5.15       | 0.72647       |
| D450 | l    | l    | l    |       |        | 5.40 | 0.1497              | 0.0465                                      | 0.226                        | 5.38       | 0.71921       |
| H200 | l, s | l, s | 0    | 0     | 0      |      | 0.1061              | 0.175                                       | 0.175                        | 4.36       | 0.74028       |
| N202 | l, s | l, s | 0    | 0     | 0      |      | 0.1061              | 0.168                                       | 0.168                        | 6.41       | 0.74028       |
| N203 |      |      | l    | l     |        | 3.55 | 0.1061              | 0.120                                       | 0.194                        | 5.40       | 0.73792       |
| N200 | l    | l    | l    |       |        |      | 0.1061              | 0.0798                                      | 0.214                        | 4.42       | 0.73614       |
| D200 | l    | l    | l    |       |        |      | 0.1061              | 0.0397                                      | 0.230                        | 4.15       | 0.73429       |
| N300 | l, s | l, s | Ō    | 0     | 0      | 3.70 | 0.06372             | 0.178                                       | 0.178                        | 5.11       | 0.75909       |

En-Hung Chao, Renwick Hudspith, Antoine Gérardin, Jeremy Green, HM, Konstantin Ottnad 2104.02632 (EPJC)

#### Tests of the framework and adjustments to the kernel



Integrands (Lepton loop, method 2)



► The QED kernel  $\overline{\mathcal{L}}_{[\rho,\sigma];\mu\nu\lambda}(x,y)$  is parametrized by six 'weight' functions of the variables  $(x^2, x \cdot y, y^2)$ .

$$\begin{split} \bar{\mathcal{L}}^{(\Lambda)}_{[\rho,\sigma];\mu\nu\lambda}(x,y) = & \bar{\mathcal{L}}_{[\rho,\sigma];\mu\nu\lambda}(x,y) - \partial^{(x)}_{\mu}(x_{\alpha}e^{-\Lambda m_{\mu}^{2}x^{2}/2})\bar{\mathcal{L}}_{[\rho,\sigma];\alpha\nu\lambda}(0,y) \\ & - \partial^{(y)}_{\nu}(y_{\alpha}e^{-\Lambda m_{\mu}^{2}y^{2}/2})\bar{\mathcal{L}}_{[\rho,\sigma];\mu\alpha\lambda}(x,0), \end{split}$$

- Using this kernel, we have reproduced (at the 1% level) known results for a range of masses for:
  - 1. the lepton loop (spinor QED, shown in the two plots);
  - 2. the charged pion loop (scalar QED);
  - 3. the  $\pi^0$  exchange with a VMD-parametrized transition form factor.

#### Averaging over the direction of the muon momentum

#### We arrive at

$$a_{\mu}^{\text{HLbL}} = \frac{me^6}{3} \int_{x,y} \bar{\mathcal{L}}_{[\rho,\sigma];\mu\nu\lambda}(x,y) \; i\widehat{\Pi}_{\rho;\mu\nu\lambda\sigma}(x,y),$$

with

$$\begin{split} \bar{\mathcal{L}}_{[\rho,\sigma];\mu\nu\lambda}(x,y) &= \mathcal{G}^{\mathrm{I}}_{\delta[\rho,\sigma]\mu\alpha\nu\beta\lambda} \langle \hat{\epsilon}_{\delta}\partial^{(x)}_{\alpha}(\partial^{(x)}_{\beta} + \partial^{(y)}_{\beta})\mathcal{I}\rangle_{\hat{\epsilon}} \\ &+ m \,\mathcal{G}^{\mathrm{II}}_{\delta[\rho,\sigma]\mu\alpha\nu\beta\lambda} \langle \hat{\epsilon}_{\delta}\hat{\epsilon}_{\beta} \,\partial^{(x)}_{\alpha}\mathcal{I}\rangle_{\hat{\epsilon}} \\ &+ m \,\mathcal{G}^{\mathrm{III}}_{\delta[\rho,\sigma]\mu\alpha\nu\beta\lambda} \,\langle \hat{\epsilon}_{\alpha}\hat{\epsilon}_{\delta}(\partial^{(x)}_{\beta} + \partial^{(y)}_{\beta})\mathcal{I}\rangle_{\hat{\epsilon}}, \end{split}$$

#### where we have defined

$$\begin{split} \mathcal{G}^{\mathrm{I}}_{\delta[\rho,\sigma]\mu\alpha\nu\beta\lambda} &\equiv \frac{1}{8}\mathrm{Tr}\Big\{\Big(\gamma_{\delta}[\gamma_{\rho},\gamma_{\sigma}]+2(\delta_{\delta\sigma}\gamma_{\rho}-\delta_{\delta\rho}\gamma_{\sigma})\Big)\gamma_{\mu}\gamma_{\alpha}\gamma_{\nu}\gamma_{\beta}\gamma_{\lambda}\Big\},\\ \mathcal{G}^{\mathrm{II}}_{\delta[\rho,\sigma]\mu\alpha\nu\beta\lambda} &\equiv -\frac{1}{4}\mathrm{Tr}\Big\{\Big(\gamma_{\delta}[\gamma_{\rho},\gamma_{\sigma}]+2(\delta_{\delta\sigma}\gamma_{\rho}-\delta_{\delta\rho}\gamma_{\sigma})\Big)\gamma_{\mu}\gamma_{\alpha}\gamma_{\nu}\Big\}\,\delta_{\beta\lambda},\\ \mathcal{G}^{\mathrm{III}}_{\delta[\rho,\sigma]\mu\alpha\nu\beta\lambda} &\equiv -\frac{1}{4}\mathrm{Tr}\Big\{\Big(\gamma_{\delta}[\gamma_{\rho},\gamma_{\sigma}]+2(\delta_{\delta\sigma}\gamma_{\rho}-\delta_{\delta\rho}\gamma_{\sigma})\Big)\gamma_{\mu}(\delta_{\alpha\lambda}\gamma_{\nu}\gamma_{\beta}-\delta_{\alpha\beta}\gamma_{\nu}\gamma_{\lambda}+\delta_{\alpha\nu}\gamma_{\beta}\gamma_{\lambda})\Big\}.\end{split}$$

The tensors  $\mathcal{G}^{A}_{\delta[
ho,\sigma]\mu\alpha
ueta\lambda}$  are sums of products of Kronecker deltas.

#### The scalar function $\mathcal{I}$

Recall:

$$\mathcal{I}(p,x,y)_{\mathrm{IR \ reg.}} = \int_{q,k} \frac{1}{q^2 \, k^2 \, (q+k)^2} \, \frac{1}{(p-q)^2 + m^2} \, \frac{1}{(p-q-k)^2 + m^2} \, e^{-i(q\cdot x + k \cdot y)}$$

In terms of position-space propagators, we can write it as

$$\begin{aligned} \mathcal{I}(p = im\hat{\epsilon}, x, y) &= \int_{u} G_{0}(y - u) J(\hat{\epsilon}, u) J(\hat{\epsilon}, x - u), \\ J(\hat{\epsilon}, u) &= \int_{\tilde{u}} G_{0}(u - \tilde{u}) e^{m\hat{\epsilon}\cdot\tilde{u}} G_{m}(\tilde{u}). \end{aligned}$$

The function  $J(\hat{\epsilon}, u)$  represents the amplitude for a scalar particle to start from the origin, emit a photon that reaches spacetime-point u, and emerge on-shell.

Propagators in Euclidean:

$$\begin{aligned} G_0(x-y) &= \int_k \frac{e^{ik \cdot (x-y)}}{k^2} = \frac{1}{4\pi^2 (x-y)^2} \,, \\ G_m(x-y) &= \int_k \frac{e^{ik \cdot (x-y)}}{k^2 + m^2} = \frac{m}{4\pi^2 |x-y|} K_1(m|x-y|) \,, \end{aligned}$$

#### The function $J(\hat{\epsilon}, u)$

Its expansion in  $\lambda = 1$  Gegenbauer polynomials (analogue for d = 4 of Legendre polynomials for d = 3):

$$J(\hat{\epsilon}, u) = \frac{1}{8\pi^2 m|u|} \int_0^{m|u|} dt \ e^{t\hat{\epsilon}\cdot\hat{u}} \ K_0(t) = \sum_{n=0}^\infty z_n(u^2) \ C_n(\hat{\epsilon}\cdot\hat{u}),$$
  
$$z_n(u^2) = \frac{1}{4\pi^2} \Big[ I_{n+2}(m|u|) \frac{K_0(m|u|)}{n+1} + I_{n+1}(m|u|) \Big( \frac{K_1(m|u|)}{n+1} + \frac{K_0(m|u|)}{m|u|} \Big) \Big],$$

The average of the scalar, vector, tensor components of  $J(\hat{\epsilon},u)\,J(\hat{\epsilon},x-u)$  over  $\hat{\epsilon}$  is done analytically *before* the u integral.

The final u integral is reduced to one angular, one radial integral, which were done numerically.

#### Integrand at $m_{\pi} = m_K \simeq 415 \,\mathrm{MeV}$



 Partial success in understanding the integrand in terms of familiar hadronic contributions.



 Reasonable understanding of magnitude of finite-size effects. (L<sub>H200</sub> = 2.1 fm, L<sub>N202</sub> = 3.1 fm)

2006.16224 Chao et al. (EPJC)

#### Separate extrapolation of conn. & disconn.



Ansatz:  $Ae^{-m_{\pi}L/2} + Ba^2 + CS(m_{\pi}^2) + D + Em_{\pi}^2$ 

chirally singular behaviour cancels in sum of connected and disconnected.

#### Extrapolation to the sum of conn. & disconn.



Ansatz:  $Ae^{-m_{\pi}L/2} + Ba^2 + D + Em_{\pi}^2$ 

- results very stable with respects to cuts in a,  $m_{\pi}$  or  $m_{\pi}L$ .
- largest systematic comes from choice of continuum limit ansatz.
- ▶ final result: central value from fitting these results with a constant; systematic error set to  $\sqrt{(1/N)\sum_{i=1}^{N}(y_i \bar{y})^2}$  as a measure of the spread of the results.

#### Strange contribution

Ensemble C101 ( $48^3 \times 96$ , a = 0.086 fm,  $m_{\pi} = 220$  MeV)



NB. Strange integrand has a factor 17 suppression due to charge factor.

(2,2) disconnected contributions.

#### **Extrapolation of strange contributions**



Sum of connected-strange + (2,2) topology with ss and sl quark-line content.

Final strange contribution is very small as a result of cancellations.

# Compilation of $a_{\mu}^{\rm HLbL}$ determinations



Good consistency of different determinations (not including charm here). Fig from Chao et al, 2104.02632 (EPJC).