Updates on QED Contributions since WP2020

Makiko Nio (RIKEN) of AHKN w/T. Aoyama (U Tokyo), M. Hayakawa (Nagoya U), T. Kinoshita (Cornell U) and A. Hirayama (Saitama U) September 12, 2024 7th Plenary Workshop of the Muon g-2 Theory Initiative KEK, Tsukuba, Japan

Talk Outline

New experimental results

- Rb atom-recoil measurement
- Electron g-2 measurement

Updates on input values for the theory of muon g-2

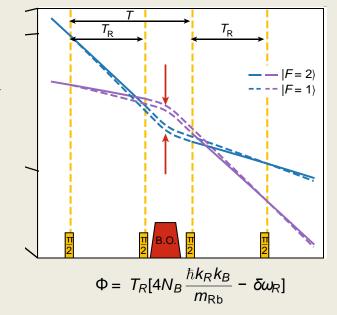
- The fine-structure constant α
- The electron-muon mass ratio me/mµ

Status of the QED g-2 calculation

- QED 10th-order mass-independent universal term $A_1^{(10)}$

New atom recoil measurement of Rb

A New result of h/M

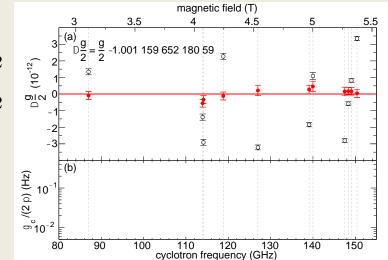

Leo Morel, Zhibin Yao, Pierre Clade, Saida Guellati-Khelifa, Laboratoire Kastler Brossel (LKB), Nature 588, 61-65 (2020)

 $h/M_{\rm Rb} = 4.591\,359\,258\,90\,(65) \times 10^{-9}\,{\rm m}^2{\rm s}^{-1}$

Rb(rubidium) atom interferometer h/M_{Rb}

Since 2019, the Planck constant *h* is the defined constant, this is the most precise direct atomic mass measurement.

atom mass = ion mass + electron mass - ionization energy Penning Trap Optical expt.


New Electron g-2 measurement

arXiv: 2209.13084, PRL130,071801(2023)

X. Fan, T. G. Mayers, B.A.D. Sukra, and G. Gabrielse, Northwestern U

 $a_e(\text{NW22}) = 1\,159\,652\,180.59\,(13) \times 10^{-12}$ $a_e(\text{HV08}) = 1\,159\,652\,180.72\,(28) \times 10^{-12}$

2.2 times better than before different values of Magnetic fields less systematic uncertainty

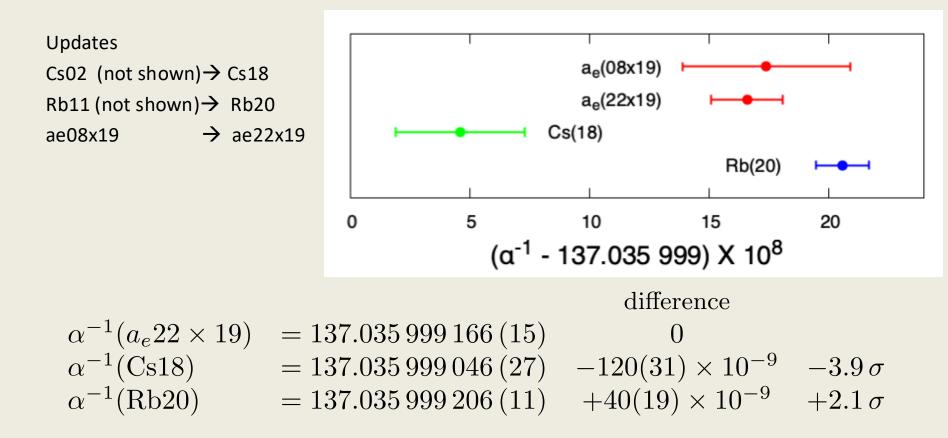
the fine-structure constant $\boldsymbol{\alpha}$

• Atomic Recoil h/M of Cs or Rb

$$\alpha = \left[\frac{h}{M} \times \frac{A_r(M)}{A_r(m_e)} \times \frac{2R_{\infty}}{c}\right]^{1/2}$$
CODATA2022, May2024
$$= 10\,973\,731.568\,157(12)\,\mathrm{m}^{-1} \qquad 1.1\mathrm{ppt}$$
least precise
$$A_r(e) = 5.485\,799\,090\,441\,(97) \times 10^{-4}\,\mathrm{u} \qquad 18\mathrm{ppt}$$

$$A_r(M_{\mathrm{Rb}}) = 86.909\,180\,5310\,(60)\,\mathrm{u} \qquad 69\mathrm{ppt}$$

$$A_r(M_{\mathrm{Cs}}) = 132.905\,451\,9615\,(86)\,\mathrm{u} \qquad 65\mathrm{ppt}$$


• Electron g-2

 $a_e(\text{expt.}) = a_e(\text{theory}; \alpha)$

WP2022 α values h/M_Cs18 $\alpha^{-1}(Cs18) = 137.035\,999\,046\,(27)$ $\alpha^{-1}(a_e08 \times 19) = 137.035\,999\,1496\,(13)(14)(330)$ QED19, Hadron VP, HV08

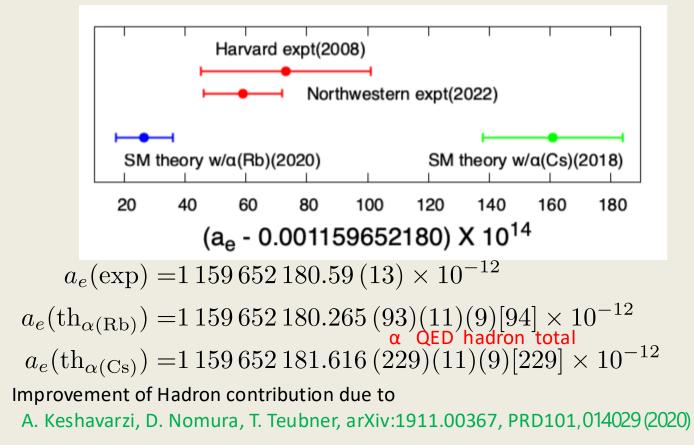
 $\begin{array}{ccc} {\sf Expt} & {\sf theory} \\ 08 \, \times \, 19 \ {\rm means} \ {\rm HV08} \ {\rm and} \ {\rm QED19} \end{array}$

Values of α for WP2025

Effects on lepton g-2 values from $\Delta \alpha$

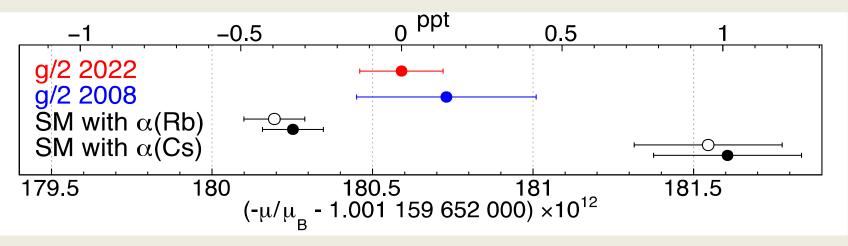
The leading theory term of g-2 $a_l = \frac{\alpha}{2\pi} + \cdots$

 a_l value relative to the $a_l \,$ w/ $\alpha(a_e 22 \times 19)$


If $\alpha({
m Cs18})$ is used, a_l shifts $+1.0 imes10^{-12}$

If $\alpha({
m Rb}20)$ is used, $\, {m a}_{l} \,$ shifts $\, -0.34 imes 10^{-12} \,$

any of the three α 's can be used for the theory of muon g-2


Muon g-2 World exp average in 2023 $a_{\mu}(\exp) = 116\,592\,059\,(22) \times 10^{-11}$ future uncertainty will be of order 100×10^{-12}

Electron g-2 Theory v.s. Experiment

Effects of two QED results of the 10th-order term

X. Fan, et. al. arXiv: 2209.13084, PRL130, 071801 (2023)

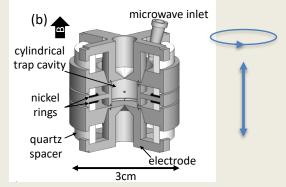
- QED 10th-order term from AHKN 2019
- QED 10th-order term from S. Volkov 2019

Different is Not crucial right now, but must be resolved. Discuss later

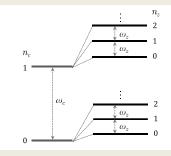
Electron-Muon mass ratio CODATA values

Electron-muon mass ratio

determined from Muonium 1S HFS (μ +e-) no update since 1999


w/ α (~0.1 ppb) and the Rydberg constant (~1 ppt)

CODATA	m_e/m_μ	
2010	$4.83633166(12) \times 10^{-3}$	
2014	$4.83633170(11) \times 10^{-3}$	Used for WP2020 $lpha(a_e08 imes12)$
2018	$4.83633169(11) \times 10^{-3}$	Effect of $lpha(\mathrm{Cs}18)$
2022	$4.83633170(11) \times 10^{-3}$	Effect of $lpha({ m Rb}22)$


CODATA years are deadlines. Publications are 1 or 2 years later.

Further improvement of Electron g-2

- G. Gabrielse @ Northwestern U keeps working
- positron g-2 measurement

Cyclotron motion is in the ground state Axial motion is NOT in the ground state → Source of the systematic error

• cooling of axial motion, quantum measurement

A factor 10 ~ 20 improvement are expected

X. Fan and G. Gabrielse arXiv:2008.01898

Improvement of Atomic Recoil Measurements

- H. Mueller@UC Berkeley
 - Cs a factor of 20 improvement is aimed
- S. Guellati-Khélifa@LKB

Rb new result in a few years?

New challenge w/ Yb (ytterbium)

• C. J. Foot@Oxford new! new proposal arXiv:2403.10225 Sr (strontium) or Yb an atom interferometer of height 3m a factor of 10 improvement in α is possible $\Delta M_A/M_A \sim 1 \times 10^{-11}$

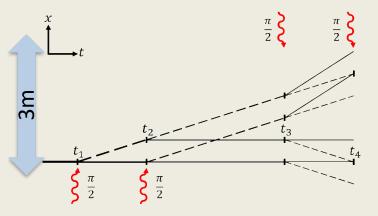


FIG. 1. Schematic spacetime diagram of a Ramsey-Bordé atom interferometer in the absence of external acceleration. The ground (excited) state is indicated by a solid (dashed) line with thickness indicative of the probability density. The timings of the laser pulses are such that $t_4 - t_3 = t_2 - t_1$, thus two pairs of trajectories result in interference.

arXiv:2403.10225

QED contribution to g-2

QED contribution to the lepton g-2

$$a_l(\text{QED}) = A_1 + A_2\left(\frac{m_l}{m_{l_1}}\right) + A_2\left(\frac{m_l}{m_{l_2}}\right) + A_3\left(\frac{m_l}{m_{l_1}}, \frac{m_l}{m_{l_2}}\right)$$

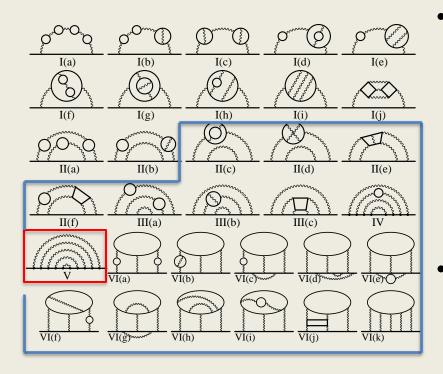
QED perturbation

$$A_i = \sum_{n=1}^{n} \left(\frac{\alpha}{\pi}\right)^n A_i^{(2n)}$$

l=e, μ , and *n*=1, 2, 3, and 4, well established

We focus on the tenth-order terms, n=5

10th-order QED g-2 A₁


S. Volkov's calculation of the 10^{th} -order mass-independent A₁ term

- <u>arXiv:1909.08015</u> Phys. Rev. D 100, 096004 (2019) Diagrams of Set V w/o fermion loop discrepancy 4.8 σ from the AHKN 2019 result
- <u>arXiv:2404.00649</u> Phys. Rev. D 110, 036001 Published 2 August 2024

Diagrams w/ fermion loop agree with the AHKN 2012 results Set V discrepancy 4.6 σ from the AHKN 2019 result

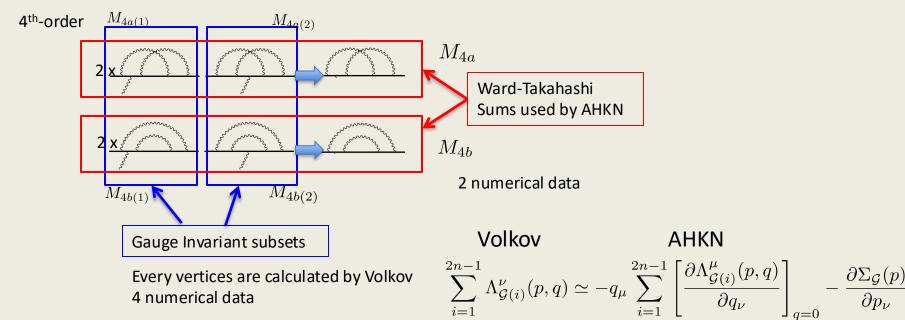
Details will be described by S. Volkov's talk in this session

10th-order diagrams • 12,672 vertex diagrams over 32 Sets

31 Sets w/ fermion loop (6,318 diagrams)
 I(a-j), II(a,b) were already confirmed
 S. Lapota (1994)
 P. A. Baikov, A. Maier, and P. Marguard (2013)

agreement between AHKN and Volkov

AHKN Volkov


- $-0.933(17) \{-0.9377(35)\} = 0.005(17)$
- Set V w/o fermion loop (6,354 diagrams)AHKNVolkov $7.668 (159) \begin{cases} 6.793 (90) \\ 6.857 (81) \end{cases} = \begin{pmatrix} 0.875 (182), \\ 0.811 (178), \\ 4.6\sigma (2024) \end{cases}$

Confirmed the first time

Set V: Ward-Takahashi sum v.s. Vertices

AHKN: 389 Ward-Takahashi sums of v-diagrams.

Volkov: 3,213 vertex diagrams.

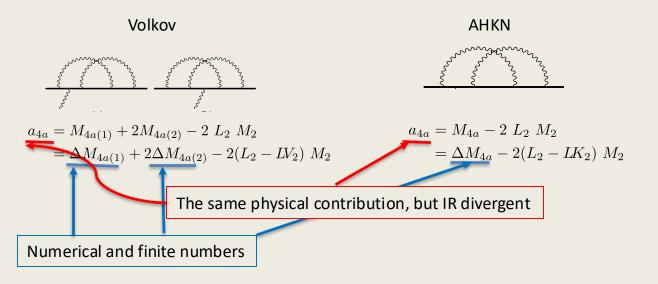
Different renormalization scheme

On-shell renormalization constants for a self-energy diagram G:

$L_{G(i)}$ for vertex renormalization

 B_G for wave-function renormalization

Volkov used IR-free and Ward-Takahashi identity holds:


$$BV_G + \sum_{i=1}^{2n-1} LV_{G(i)} = 0$$

AHKN used IR free, easy-to-determine, but breaking WT-identity:

$$BK_G + \sum_{i=1}^{2n-1} LK_{G(i)} + \Delta LB_G \neq 0$$

Finite renormalization Restore the gauge invariance

Connection bw Volkov and AHKN

$$\Delta M_{4a} - (\Delta M_{4a(1)} + 2\Delta M_{4a(2)}) = 2 \ \delta L_2 \ M_2$$

AHKN's integral Volkov's integral Gap equation

where

$$\delta L_2 \equiv LV_2 - LK_2$$

What to do

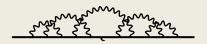
To compare AHKN and Volkov's numerical results of integrals,

- Obtain the symbolic expressions of the gap equations expressed by δL and ΔM_G of the 2nd ~ 8th order quantities
- Calculate the values of δL . $\Delta M_G~$ are known from AHKN's old publications.
- The difference of numerical integrals is compared to the numerical values of the gap equation.

New calculation of $\delta L_{G(i)}$

Difference of vertex renormalization constants

numerically calculated for n=1, 2, 3, 4 loops


(#) # of independent diagrams

Order 2n	2	4	6	8		
# of vertex diagrams	1	6 (4)	50 (38)	518 (269)		
	e e e e e e e e e e e e e e e e e e e	est and a second	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	and a second sec		
$\delta L_{G(i)} = \left(1 + \sum_{f} \left[\prod_{S_i \in f} (-\mathbb{K}_{S_i})\right]\right) (LV_{G(i)} - LK_{G(i)})$ UV subtraction w/ AHKN's K-operation						

269 x 1 hour x 40 core ~ 10,000 core x hours easy calculation compared to the 10th-order g-2

A. Hirayama, JPS 2021 spring meeting

X001 as an example

abacbdcede

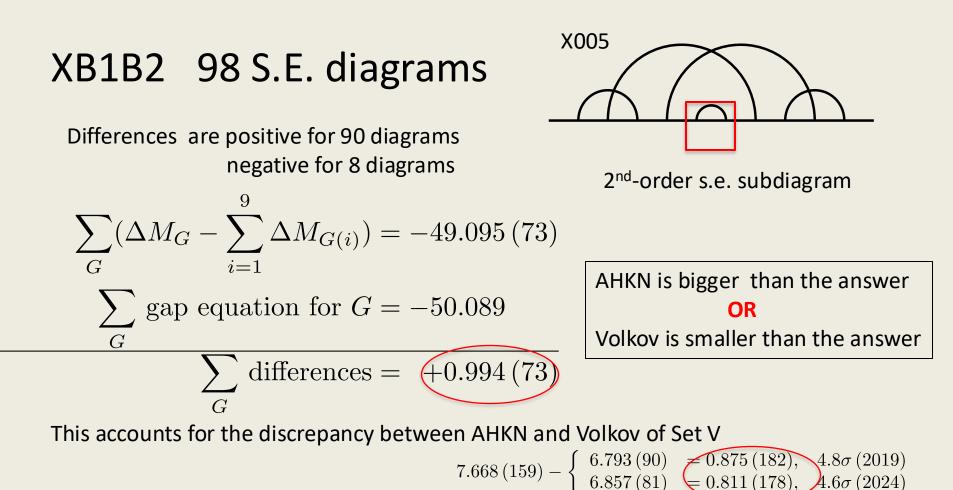
gap equation ΔM_{X001} $\sum \Delta M_{X001(i)} = \Delta M_2 \ (-3(\delta L_{4a1})^2 - 6\delta L_2 \delta L_{6f1} + 12(\delta L_2)^2 \delta L_{4a1})^2$ AHKN Volkov2019 $-5(\delta L_2)^4 + 2\delta L_{01v1})$ Symbolic expression $+\Delta M_{01} (2\delta L_2)$ $+\Delta M_{6f} (2\delta L_{4a1} - 3(\delta L_2)^2)$ Numerical $+\Delta M_{4a} \left(2\delta L_{6f1} - 6\delta L_2 \delta L_{4a1} + 4(\delta L_2)^3\right)$ integrals l.h.s = -0.16083 (334) - 0.58095 (534)= -0.74178 (630) Substitute numerical values r.h.s $= -0.73854\ldots$ for lower-order symbols l.h.s - r.h.s = -0.00324 (630)

A. Hirayama, JPS 2021 spring meeting

X001 safely passes the numerical check. Nothing wrong in AHKN and in Volkov

All X001 – X389 pass the check

almost 0


Diagram \mathcal{G}	Expression	$\Delta M_{\mathcal{G}} - \sum_{i} \Delta M_{\mathcal{G}(i)}$	Gap Equation	Difference
X001	a bacbdce de	-0.7418	-0.7385	-0.0033(63)
X002	a baccdde be	8.0130	8.0253	-0.0123(139)
X003	a bacdbcede	2.0226	2.0221	0.0006(29)
X004	a bacdcde be	-6.5041	-6.5146	0.0104(130)
X005	abacddbece	-0.2680	-0.2789	0.0110(106)
X006	abacddcebe	0.5522	0.5522	-0.0000(125)
X007	abbcadceed	-0.2365	-0.2250	-0.0115(128)
X008	abbccddeea	-3.8164	-3.8115	-0.0050(168)
X009	abbcdaceed	0.1962	0.2050	-0.0089(69)
X010	abbcdcdeea	-1.4020	-1.4014	-0.0007(137)
X011	abbcddaeec	-0.6609	-0.6645	0.0035(110)
X012	abbcddceea	-0.4561	-0.4717	0.0156(129)
X013	abcabdecde	1.7891	1.7879	0.0012(14)
X014	abcacdedbe	0.2015	0.2018	-0.0003(32)
X015	abcadbecde		1.1141	-0.0016(6)
X016	abcadcedbe	-0.4574	-0.4567	-0.0007(5)
X017	abcaddebce	-0.7935	-0.7966	0.0030(15)
X018	abcaddecbe	-0.4154	-0.4194	0.0040(17)
X019	abcbadeced	2.3984	2.3968	0.0016(31)
X020	abcbcdedea	7.6668	7.6799	-0.0131(131)
X021	abcbdaeced	0.3403	0.3408	-0.0005(16)
X022	abcbdcedea	-1.1144	-1.1238	0.0094(114)
X023	abcbddeaec	-0.4987	-0.5074	0.0087(58)
X024	abcbddecea	4.5369	4.5595	-0.0226(131)
X025	abccadeebd	2.4091	2.4333	-0.0242(119)
X026	abccbdeeda	1.2078	1.2042	0.0035(110)
X027	abccdaeebd	-0.2238	-0.2272	0.0034 (46)

Both AHKN and Volkov correctly formulated the Set V integrals.

Why discrepancy arise?

- The differences range from -0.03 to + 0.03
- Not randomly distributed → Bias in numerical integration
 # of negative differences << # of positive differences
- We divided 389 self-energy diagrams into 4 classes

 Diagrams w/o a self-energy subdiagram
 XL
 135
 Diagrams w/ one 2nd-order self-energy subd.
 XB1B2
 98
 Diagrams w/ two 2nd-order self-energy subd
 XB2B2
 33
 Others
 others

Re-evaluation of the 98 integrals of AHKN

Numerical calculations since December 2023 @RIKEN We used the same integration program VEGAS used for previous works.

• Quasi double-double-precision calculation

shift

$$\sum_{G} \Delta M_{G} = 57.806 \ (64) \longrightarrow 57.002 \ (33), \quad -0.803 \ (72)$$
new
Double-precision calculation
$$\sum_{G} \Delta M_{G} = 57.806 \ (64) \longrightarrow 56.868 \ (18), \quad -0.937 \ (66)$$
new

Updated Set V result

If XB1B2 is replaced by the quasi-double-double result,

The discrepancy may be resolved

The 98 integrals of XB1B2 are relatively easy to evaluate Calculated around 2008 ~ 2012, more than 10 years ago The # of samplings for Monte Carlo integration is not sufficient

Summary & Prospectives

• Input values of QED

α from 0.1 ppb to 0.01 ppb in 10 years

me/mµ Muonium H.F.S. J-PARC MUSEUM

1S-2S J-PARC Okayama U and PSI Mu-MASS

• 10th-order QED

the discrepancy on the universal term A_1 is almost resolved further independent checks are needed for the mass-dependent term A_2 preparation of the $12^{\rm th}$ -order QED is in progress

 No significant change in the QED contribution to the muon g-2, but the uncertainty is halved due to the improvement of α Thank you for your patience