

johan.bijnens@fysik.lu.se https://www.particle-nuclear.lu.se/johan-bijnens

Seventh plenary workshop of the muon g-2 theory initiative

KEK, Tsukuba, Japan

9-13 September 2024

LUND

Bohr-Pauli and the tippe top

Niels Bohr, Wolfgang Pauli Inauguration of the new physics building in Lund 1951

https://en.wikipedia.
org/wiki/Tippe_top

Analytic HLbL

Johan Bijnens

Introduction

HLbL

Planned

Hadronic contributions

- Muon and photon lines, representative diagram
- The blobs are hadronic contributions
- There are higher order contributions of this type as well: known accurately enough

Analytic HLbL

Johan Bijnens

Introduction

HLbL

HLbL: Hadronic light-by-light

Analytic HLbL

Johan Biinens

HL bL

- = $\Pi^{\mu\nu\lambda\sigma}(q_1, q_2, q_3)$ of four vector currents
- 6 variables
- Actually we really need $\frac{\delta \Pi^{\mu\nu\lambda\sigma}(q_1, q_2, q_3)}{\delta q_{4\rho}}$
- Mixed: q_4 at zero, q_1^2, q_2^2, q_3^2 so three-variables, or Q_1^2, Q_2^2, Q_3^2 $(q_i^2 = -Q_i^2)$

 $a_{A}=0$

Models, Dispersive methods, Lattice QCD

Contributions HLbL White paper

• "Long distance": under good control

- Dispersive method: Berne group around G. Colangelo
- π^0 (and η, η') pole: 93.8(4.0) $\cdot 10^{-11}$
- Pion and kaon box (pure): $-16.4(2) \cdot 10^{-11}$
- $\pi\pi$ -rescattering (include scalars below 1 GeV):-8(1) \cdot 10⁻¹¹
- Charm (beauty, top) loop: $3(1) \cdot 10^{-11}$
- "Short and medium distance" Main source of the error
 - Scalars, tensors: $-1(3) \cdot 10^{-11}$
 - Axial vector: 6(6) · 10⁻¹¹
 - Short-distance: $15(10) \cdot 10^{-11}$

$a_{\mu}^{HLbL-Analytic}=92(19)\cdot10^{-11}$

۲

Analytic HLbL

Johan Bijnens

Introduction

HLbL

Happened since then

- Many presentations in KEK21, Edinburgh 22, Berne 23
- More experimental inputs exist: talk by Christophe Redmer
- Short-distance improved considerably: talk by Nils Hermansson-Truedsson
- Holographic QCD improvements done: relevant for axials and short-distance talk by Anton Rebhan
- Intermediate distance: the axial vectors are important: talk by Maximilian Zillinger
- The pseudo-scalar pole contribution has been improved: talk by Simon Holz
- An alternative dispersive method that might be easier for multibody intermediate states: talk by Jan-Niklas Toelstede

UNIVERSITY Analytic HLbL

Johan Biinens

Introduction

HLbL

Planned chapters

Still in the discussion stage plus an update or a full new whitepaper also under discussion

- Framework
- Short-distance constraints
- Oispersive
- Holographic
- Other+comparison
- O Combing short-distance with the other approaches
- A new final number
- Prospects for further improvements

Analytic HLbL

Johan Bijnens

Introduction

HLbL

