Experimental input from **EESI** for the HLbL contribution

7th Plenary Workshop of the Muon g-2 Theory Initiative

Christoph Florian Redmer

2024-09-13

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

"Wish List" from 2020 WP

Input from **BESIII**

Table 14

September 13, 2024

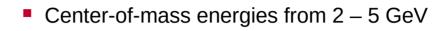
issue	experimental input [I] or cross-checks [C]
aviale tensore higher recudescalare	
axials, tensors, higher pseudoscalars	$\gamma^{(*)}\gamma^* \rightarrow 3\pi, 4\pi, K\bar{K}\pi, \eta\pi\pi, \eta'\pi\pi$ [I]
missing states	inclusive $\gamma^{(*)}\gamma^* \rightarrow$ hadrons at 1–3 GeV [I]
dispersive analysis of $\eta^{(\prime)}$ TFFs	$e^+e^- ightarrow \eta \pi^+\pi^-$ [I]
	$\eta' ightarrow \pi^+ \pi^- \pi^+ \pi^-$ [I]
	$\eta' ightarrow \pi^+ \pi^- e^+ e^-$ [I]
	$\gamma \pi^- ightarrow \pi^- \eta$ [C]
dispersive analysis of π^0 TFF	$\gamma \pi ightarrow \pi \pi$ [I]
	high accuracy Dalitz plot $\omega \rightarrow \pi^+ \pi^- \pi^0$ [C]
	$e^+e^- ightarrow \pi^+\pi^-\pi^0$ [C]
	$\omega, \phi ightarrow \pi^0 l^+ l^-$ [C]
pseudoscalar TFF	$\gamma^{(*)}\gamma^* ightarrow \pi^0, \eta, \eta'$ at arbitrary virtualities [I,C]
pion, kaon, $\pi\eta$ loops	$\gamma^{(*)}\gamma^* \to \pi\pi, \ K\bar{K}, \ \pi\eta$ at arbitrary virtualities,
(including scalars and tensors)	partial waves [I,C]

Priorities for new experimental input and cross-checks.

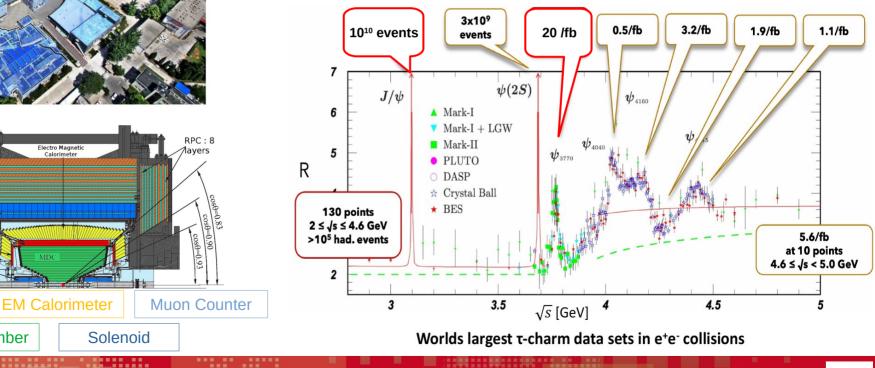
Phys.Rept. 887 (2020) 1 – 166

"Wish List" from 2020 WP

Table 14


issue	experimental input [I] or cross-checks [C]	
axials, tensors, higher pseudoscalars missing states dispersive analysis of $r^{(l)}$ TEEs	inclusive $\gamma^{(*)}\gamma^* \rightarrow$ hadrons at 1–3 GeV [I]	N Lladrania araga agatiana
dispersive analysis of $\eta^{(\prime)}$ TFFs	$e^{+}e^{-} \rightarrow \eta \pi^{+}\pi^{-} [I]$ $\eta' \rightarrow \pi^{+}\pi^{-}\pi^{+}\pi^{-} [I]$ $\eta' \rightarrow \pi^{+}\pi^{-}e^{+}e^{-} [I]$ $\gamma \pi^{-} \rightarrow \pi^{-}\eta [C]$	 Hadronic cross sections Meson decays
dispersive analysis of π^0 TFF	$\gamma \pi \rightarrow \pi \pi \eta$ [C] $\gamma \pi \rightarrow \pi \pi$ [I] high accuracy Dalitz plot $\omega \rightarrow \pi^+ \pi^- \pi^0$ [C] $e^+ e^- \rightarrow \pi^+ \pi^- \pi^0$ [C] $\omega, \phi \rightarrow \pi^0 l^+ l^-$ [C]	Two-photon reactions
pseudoscalar TFF pion, kaon, $\pi\eta$ loops (including scalars and tensors)	$\gamma^{(*)}\gamma^* \to \pi^0, \overline{\eta, \eta'}$ at arbitrary virtualities [I,C] $\gamma^{(*)}\gamma^* \to \pi\pi, K\bar{K}, \pi\eta$ at arbitrary virtualities, partial waves [I,C]	

Priorities for new experimental input and cross-checks.


Phys.Rept. 887 (2020) 1 - 166

BESIII at BEPCII

Design luminosity exceeded: 1.1×10³³ cm⁻²s⁻¹ at 3.77 GeV

Input from BESIII

RPC: 9

layers

SC Solenoid[~]

Barrel

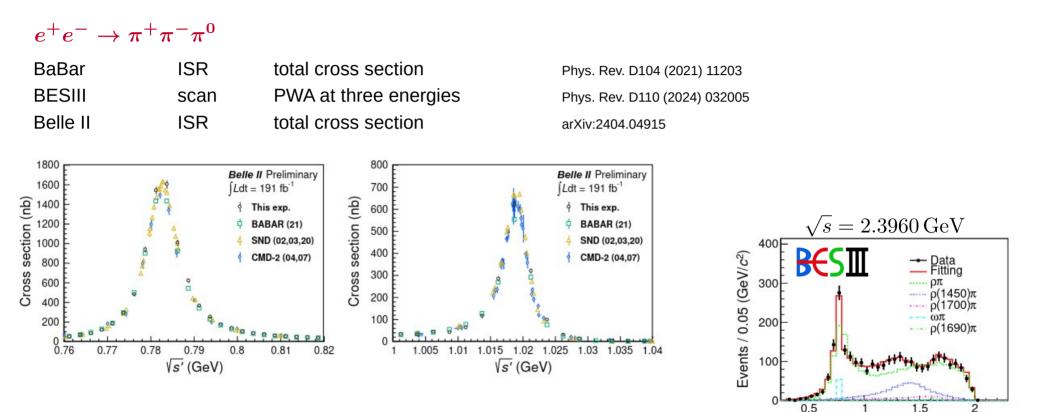
ToF

Endcap,

ToF

Time of Flight

SC ~

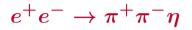

Drift Chamber

September 13, 2024

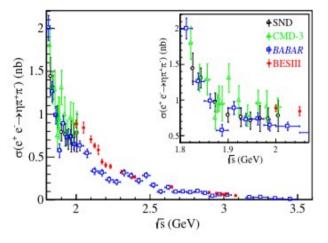
Quadrupole

Hadronic cross sections

Input from **BESIII**


September 13, 2024

JGU


 $M_{\pi^+\pi^-}$ (GeV/ c^2)

Hadronic cross sections

Input from **BESIII**

PWA at three energies

Phys.Rev. D108 (2023) 111101

TABLE I. Statistical significances and fit fractions of possible intermediate processes at $\sqrt{s} = 2.125$, 2.396, and 2.900 GeV.

Kf-S

IGI

$\sqrt{s} = 2.125 \text{ GeV}$			$\sqrt{s} = 2.396 \text{ GeV}$			$\sqrt{s} = 2.900 \text{ GeV}$		
Process	Significance (σ)	Fraction (%)	Process	Significance (σ)	Fraction (%)	Process	Significance (σ)	Fraction (%)
$\rho(770)\eta$	>20	58.0 ± 1.0	$\rho(770)\eta$	>20	69.5 ± 2.5	$\rho(770)\eta$	>20	66.8 ± 2.2
$a_2(1320)\pi$	>20	24.1 ± 0.8	$a_2(1320)\pi$	>20	13.0 ± 1.1	$a_2(1320)\pi$	>10	21.7 ± 2.1
$\rho(1450)\eta$	>10	1.8 ± 0.3	$\rho(1450)\eta$	5.1	1.0 ± 0.4	$\rho(1450)\eta$	>10	16.5 ± 0.4
$a_2(1700)\pi$	>10	2.0 ± 0.3	$\rho_3(1690)\eta$	9.7	2.5 ± 0.5	$\rho(1700)\eta$	6.5	2.1 ± 0.1
			$a_2(1700)\pi$	6.8	2.7 ± 0.4			
			$\rho(1700)\eta$	5.8	1.9 ± 0.9			

Related studies at BESIII:

 $e^+e^- \to \omega \pi^0/\eta$ $e^+e^- \to \pi^+\pi^-\eta'$ $e^+e^- \to \omega \eta'$

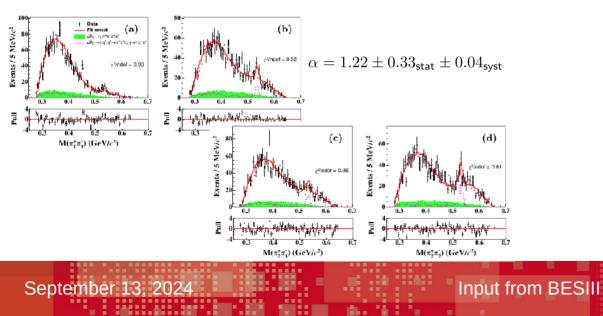
September 13, 2024

Phys.Lett. B813 (2021) 136059

Phys.Rev. D103 (2021) 072007

JHEP 07 (2024) 093

Meson decays


JGU

Phys. Rev. D109 (2024) 032006

Mode	Ν	ε (%)	$\mathcal{B}(\eta' \rightarrow X)$
$\eta' \rightarrow \pi^+ \pi^- \pi^+ \pi^-$	$1650{\pm}48$	36.4	$(8.56 \pm 0.25(\text{stat.}) \pm 0.23(\text{syst.})) \times 10^{-5}$
$\eta' \rightarrow \pi^+ \pi^- \pi^0 \pi^0$	865 ± 49	7.8	$(2.12 \pm 0.12(\text{stat.}) \pm 0.10(\text{syst.})) \times 10^{-4}$
$\eta' \rightarrow \pi^0 \pi^0 \pi^0 \pi^0$	< 10	1.6	$< 1.24 \times 10^{-5}$

- Access to doubly virtual time-like isovector transition form factor
- Amplitude analysis following Guo, Kubis, Wirzba [PRD 85 (2012) 014014] suggests coupling constants $c_1 c_2 \approx c_3$

Meson decays

Phys. Rev. D109 (2024) 032006

 $\eta'
ightarrow \pi^+\pi^- l^+ l^-$

Phys.Rev. D103 (2021) 072006 Phys.Rev. D103 (2021) 092005 JHEP 07 (2024) 135

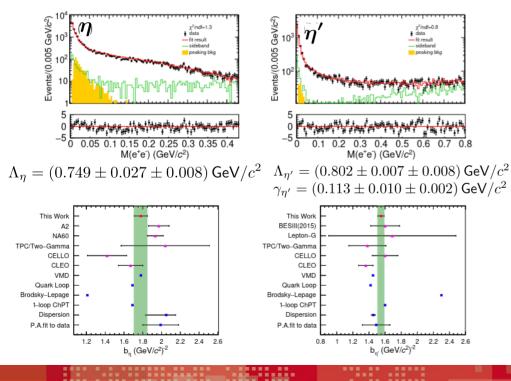
Mode	Ν	ε (%)	$\mathcal{B}(\eta' \rightarrow X)$
			$(8.56 \pm 0.25(\text{stat.}) \pm 0.23(\text{syst.})) \times 10^{-5}$
$\eta' \rightarrow \pi^+ \pi^- \pi^0 \pi^0$	865 ± 49	7.8	$(2.12 \pm 0.12 (\text{stat.}) \pm 0.10 (\text{syst.})) \times 10^{-4}$
$\eta' \rightarrow \pi^0 \pi^0 \pi^0 \pi^0$	< 10	1.6	$< 1.24 \times 10^{-5}$

- Access to doubly virtual time-like isovector transition form factor
- Amplitude analysis following Guo, Kubis, Wirzba [PRD 85 (2012) 014014] suggests coupling constants $c_1 c_2 \approx c_3$

$$\mathcal{B}(\eta' \to \pi^+ \pi^- e^+ e^-) = (2.45 \pm 0.02 (\text{stat.}) \pm 0.08 (\text{syst.})) \times 10^{-3}$$
$$\mathcal{B}(\eta' \to \pi^+ \pi^- \mu^+ \mu^-) = (2.16 \pm 0.12 (\text{stat.}) \pm 0.06 (\text{syst.})) \times 10^{-5}$$

TFF studied for different VMD models

 $b_{\eta'} = 1.30 \pm 0.19 (\text{GeV/c}^2)^2$



Meson decays

JGU

$$\begin{split} \eta/\eta' &\to \gamma e^+ e^- & \text{Phys.Rev. D109 (2024) 072001} \\ \mathcal{B}(\eta \to \gamma e^+ e^-) &= (7.07 \pm 0.05 (\text{stat.}) \pm 0.23 (\text{syst.})) \times 10^{-3} \\ \mathcal{B}(\eta' \to \gamma e^+ e^-) &= (4.83 \pm 0.07 (\text{stat.}) \pm 0.14 (\text{syst.})) \times 10^{-4} \end{split}$$

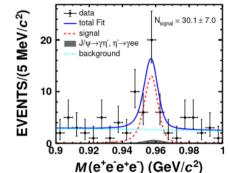
September 13, 2024

Input from BESI

JG U

Meson decays

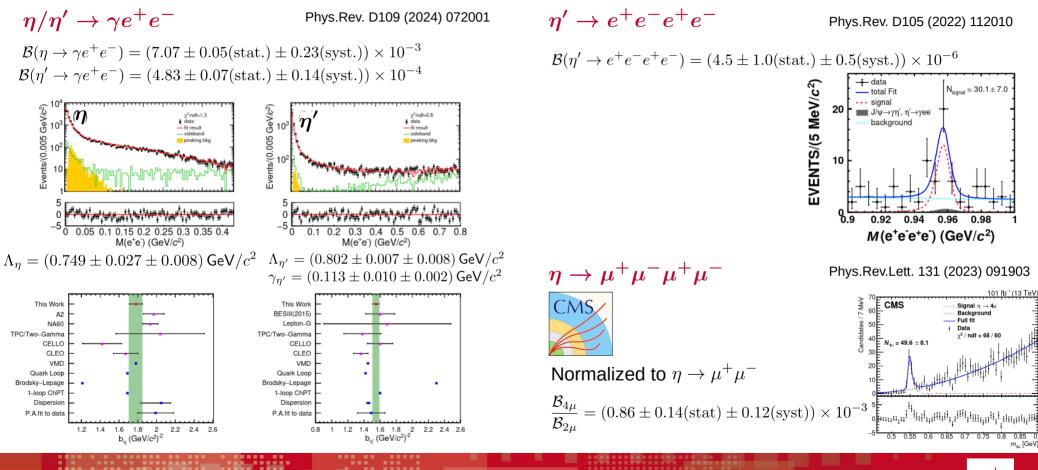
Input from **BESIII**


 $\eta/\eta'
ightarrow \gamma e^+ e^-$ Phys.Rev. D109 (2024) 072001 $\mathcal{B}(\eta \to \gamma e^+ e^-) = (7.07 \pm 0.05 (\text{stat.}) \pm 0.23 (\text{syst.})) \times 10^{-3}$ $\mathcal{B}(\eta' \to \gamma e^+ e^-) = (4.83 \pm 0.07 (\text{stat.}) \pm 0.14 (\text{syst.})) \times 10^{-4}$ Events/(0.005 GeV/c²) 01 05 Events/(0.005 GeV/c²) 10⁻⁰ pasking bla neaking blo 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 M(e⁺e⁻) (GeV/c²) 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 M(e⁺e⁻) (GeV/c²) $\Lambda_{\eta} = (0.749 \pm 0.027 \pm 0.008) \,\mathrm{GeV}/c^2$ $\Lambda_{\eta'} = (0.802 \pm 0.007 \pm 0.008) \, \mathrm{GeV}/c^2$ $\gamma_{n'} = (0.113 \pm 0.010 \pm 0.002) \,\mathrm{GeV}/c^2$ This Work This Work BESIII(2015) A2 NA60 Lepton-G TPC/Two-Gamma TPC/Two-Gamma CELLC CELLO CLEO CLEO VMD VMD Quark Loop Quark Loop Brodsky-Lepage Brodsky-Lepage 1-loop ChP1 1-loop ChPT Dispersion Dispersion P.A.fit to data P.A.fit to data 1.6 1.8 2 2.2 2.4 2.6 b_n (GeV/c²)⁻² 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 b_w (GeV/c²)⁻² 1.2 1.4 0.8

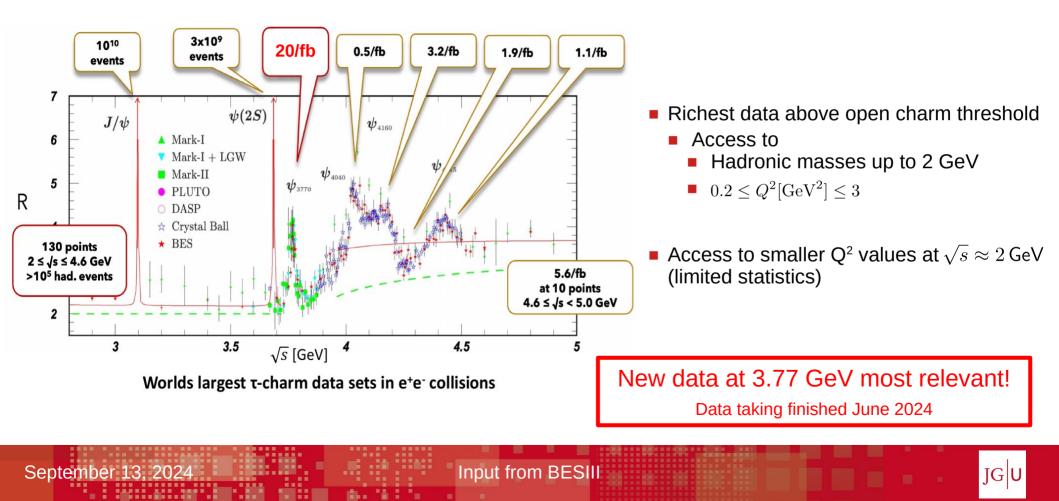
September 13, 2024

 $\eta' \to e^+ e^- e^+ e^-$

Phys.Rev. D105 (2022) 112010


 $\mathcal{B}(\eta' \to e^+ e^- e^+ e^-) = (4.5 \pm 1.0 (\text{stat.}) \pm 0.5 (\text{syst.})) \times 10^{-6}$

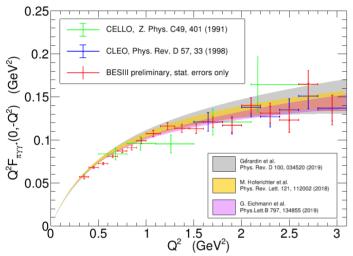
IGU


Meson decays

Input from BESIII

September 13, 2024

$\gamma^{(*)}\gamma^*$ results to be expected from BESIII



 $\gamma^{(*)}\gamma^{*}
ightarrow\pi^{0},\eta,\eta^{\prime}$

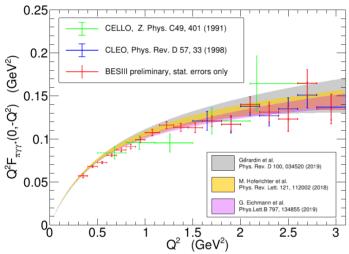
Input from **BESIII**

JGU

 $\gamma\gamma^*
ightarrow \pi^0$

Since preliminary:

- Improved systematics
- Included radiative corrections based on Ekhara3


Plan:

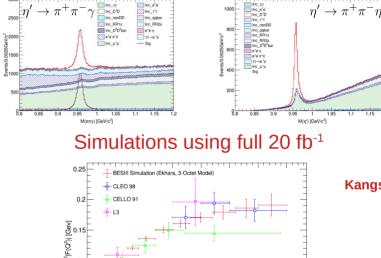
- ■Publish 'old' data to be in time from WP2
- Full data set as update

September 13, 2024

 $\gamma^{(*)}\gamma^{*}
ightarrow\pi^{0},\eta,\eta^{\prime}$

$\gamma\gamma^* o \pi^0$

Since preliminary:


- Improved systematics
- Included radiative corrections based on Ekhara3

Plan:

- ■Publish 'old' data to be in time from WP2
- Full data set as update

September 13, 2024

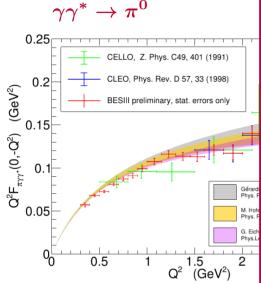
Kangshuai Zhu

JGU

■ First direct measurement at Q²<0.3 GeV²

1.5

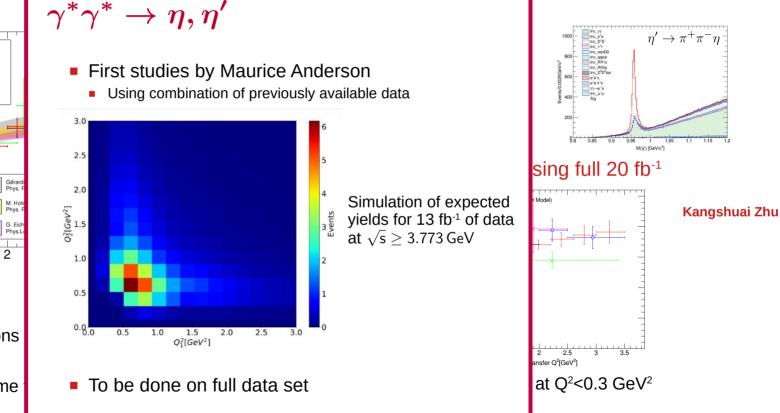
Momentum Transfer Q2[GeV2]


2.5

Unprecedented accuracy

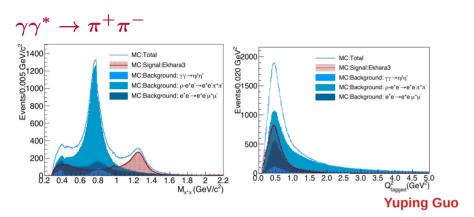
0.05

Input from BESIII


 $\gamma^{(*)}\gamma^{*}
ightarrow\pi^{0},\eta,\eta^{\prime}$

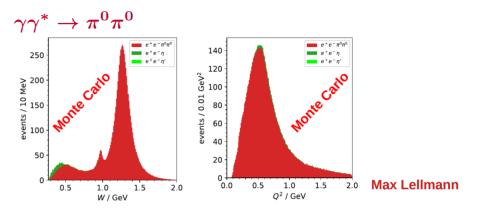
Since preliminary:

- Improved systematics
- Included radiative correctionsPlan:
- Publish 'old' data to be in time
- Full data set as update


September 13, 2024

JGU

Input from BESIII


 $\gamma^{(*)}\gamma^*
ightarrow \pi\pi$

Combined data

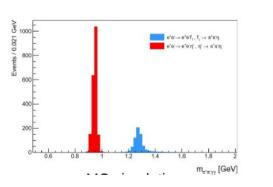
September 13, 2024

- Irreducible time-like background (rad.Bhabha
- Evaluation of efficiencies ongoing

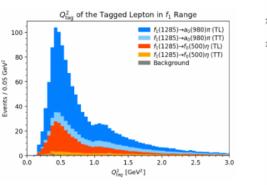
- Using only new data
- Novel strategy leads to improved Q² resolution
 - Study dependency on 2nd virtuality
 - Study angular features of two-photon production

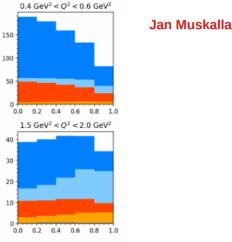
JG U

- Requires different MC generator
- Invariant masses from threshold to 2 GeV

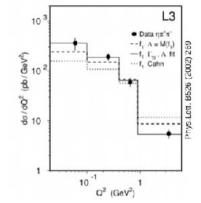

Input from BESIII

- $\bullet 0.2 \le Q^2 [{\rm GeV}^2] \le 3$
- Full coverage of helicity angle


 $\gamma\gamma^*
ightarrow f_1(1285)$

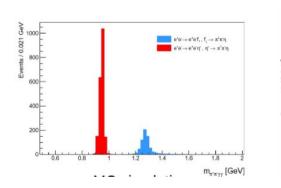

Input from **BESIII**

- Reconstructing $f_1(1285) \rightarrow \pi^+\pi^-\eta$
- Possibility to separate helicity states from fit to angular distributions
- PWA required due to inseparable intermediate states $a_0^{\pm}(980)\pi^{\mp} \longleftrightarrow f_0(500)\eta$

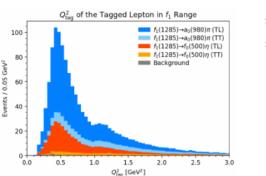

September 13, 2024

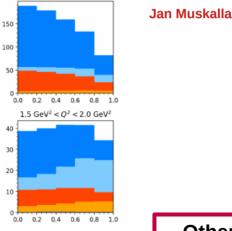
 $\cos(\theta^*)$

Only availbale data:



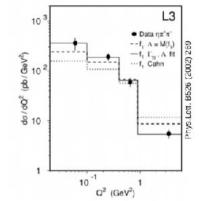
JG U


 $\gamma\gamma^*
ightarrow f_1(1285)$


Input from **BESIII**

- Reconstructing $f_1(1285) \rightarrow \pi^+\pi^-\eta$
- Possibility to separate helicity states from fit to angular distributions
- PWA required due to inseparable intermediate states $a_0^{\pm}(980)\pi^{\mp} \longleftrightarrow f_0(500)\eta$

September 13, 2024



 $cos(\theta^*$

0.4 GeV² < O² < 0.6 GeV²

JG U

Other channels:

Exploratory studies (B.Sc. thesis level) $\gamma \gamma^* \rightarrow \pi^0 \eta$ $\gamma \gamma^* \rightarrow \pi^+ \pi^- \pi^0$ $\gamma \gamma^* \rightarrow KK\pi$

Other Experimental Input

Input from BESIII

IG

TFF from coherent electroproduction of mesons (Primakoff contribution)

- Plans at JLab (Hall B & D) and MAMI (A1)
- $\bullet 0.01 \le Q^2 [\text{GeV}^2] \le 0.1$
- Primex-η data taking finished
- A1 data taking probably from next year

TFF from meson decays
 update from A2 on π⁰ TFF

- Radiative decays of axial vector mesons
 - Work ongoing at BESIII based on J/ψ decays
 - Contact with Martin and Bastian has been established

September 13. 2024