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Motivation - Low-mode averaging (LMA)

Idea [Neff et al. hep-lat/0106016, DeGrand and Schaefer hep-lat/0401011, Giusti et al.
hep-lat/0402002]: Decompose the quark propagator into two pieces
▶ One piece: should contain most of the variance
▶ Other piece: negligible variance

Determine Nc lowest modes of D,Q= γ5D, eo-preconditioned D,Q
Write S= D−1 = truncated spectral/singular sum + remainder

Q−1 =
Nc
∑
i=1

1
λi

ξiξ
†
i

︸ ︷︷ ︸
Q−1
LMA

+ PQ−1P†
︸ ︷︷ ︸

Q−1
rest=Q−1−Q−1

LMA

, (1)

with

Qξi = λiξi, |λi|= small, P= 1−
Nc
∑
i=1

ξiξ
†
i .
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The two-point correlator

Two-point connected light-quark vector correlator
In the time-momentum representation [Bernecker and Meyer 1107.4388]
(local-local), S= D−1

G(t) = 1
|Ω0| ∑

y∈Ω0
∑
x⃗∈Σ0

C(y0 + t,⃗x|y), (2)

C(x|y) = tr
[
Γ1S(x|y)Γ2S(x|y)†] , (3)

Stochastic sources: introduce extra noise
Point sources: costs L3

Ideally, but unrealistic: full lattice volume average
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The two-point correlator with LMA

Plug in decomposition of propagator

G(t) = Gee(t)+Gre(t)+Ger(t)︸ ︷︷ ︸
G×(t)

+Grr(t) (4)

Get 3-4 terms: eigen-eigen, cross (rest-eigen + eigen-rest), rest-rest

Gee(t): exact, volume-averaged, at its gauge noise

✓

Grr(t): little variance contribution → few sources

✓

G×(t): 10-30% contribution to total noise ≫ gauge noise
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The various problems of LMA

1. V2-problem: number of required low modes scales O(V) with the
volume, on state-of-the-art lattices at the physical point
▶ 1000-6000 eigenmodes [Kuberski 2312.13753, Blum et al. 1801.07224, Borsanyi

et al. 1711.04980, Blum et al. 1512.09054]
▶ Memory requirements
▶ Storage and I/O requirements (people don’t store them anymore!)

Note

Number of eigenmodes are limited by memory / resources.

2. Cross-term-problem: Cross term has lots of noise → expensive!
▶ Method 1: all-mode averaging, AMA, [Blum et al. 1208.4349, Shintani et al.

1402.0244, Blum et al. 1801.07224, Blum et al. 1512.09054]
▶ Method 2: truncated solver method (TSM) + bias correction [Kuberski

2312.13753, Borsanyi et al. 1711.04980]
▶ Method 3: stochastically evaluate the rest-eigen piece
▶ ...
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Multigrid / Deflation
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Local coherence / weak approx. property

Low modes of Dirac operator are locally coherent [Luscher 0706.2298]
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Figure: (Local) coherence of low modes (taken from Ref. [Luscher 1002.4232]).

Conclusion

Using domain decomposition / coarsening on 10-100 low modes
is enough to span the O(V) low-mode space!
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Multigrid / Deflation

Setup subspace(s) as in the previous slide (domain-decomposed
low modes)
Define restrictors R and prolongators T from/to these subspaces

R : ψ 7→ θ , θ(i) = ⟨φi|ψ⟩ , (5)
T : θ 7→ ψ = ∑

i
θ(i)φi, (6)

Define the coarse-grid Dirac operator(s) as Dc = RDT

R ·
D · T

=Dc

Connetion to solver: sloppy D−1
c as preconditioner for the Dirac

equation
LDψ = Lη with L= TD−1

c R (left preconditioning)

Main message

Coarse-grid operator has smaller dimension,
smaller condition number and is thus cheaper to
invert!
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Multigrid low-mode averaging
(MG LMA)
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Propagator

Decompose the quark propagator S= D−1 using the coarsenings

S=
N−1
∑
i=0

Si = S−K1︸ ︷︷ ︸
=S0

+K1 −K2︸ ︷︷ ︸
=S1

+K2 −K3︸ ︷︷ ︸
=S2

+ · · ·+KN−1︸︷︷︸
SN−1

, (7)

Ki = Ti(Dc,i)−1Ri, Si = deflated propagator on level i.

Each level is defined by a different domain decomp./coarse grid

−→ −→
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Two-point correlator

Plug into the correlator
For the correlator we find a matrix of correlators:

Cij(x,y) = tr
[
Γ1Si(x|y)Γ2Sj(y|x)

]
, C = ∑

i,j
Cij. (8)

i, j= 0, . . . ,N− 1 correspond to MG-level (with L0 the fine grid)
Grouping the N2 correlators into levels (see figure on next slide)
gives us

G(t) =
N−1
∑
k=0

GLk(t). (9)
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Grouping of correlators

C00

C01

C02

C03

C10

C11

C12

C13

C20

C21

C22

C23

C30

C31

C32

C33

G= GL0 + GL1 + GL2 + GL3

Crr

Cer

Cre

Cee

G= Grr + G×
︸ ︷︷ ︸

GL0

+ Gee︸︷︷︸
GL1

Each level-contribution can be evaluated with a different strategy,
i.e. number and type of sources!

Main message

Evaluating GLk requires inversions of the Dirac operator Dc,k on
level k and coarser, but not finer levels!
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Where is the variance?
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Ensembles

Name Size [T×L3] L [fm] mπ L
E71 64×323 2.1 fm 3.2
F72 96×483 3.2 fm 4.8
G71 128×643 4.2 fm 6.4
H71 192×963 6.3 fm 9.6

Table: All ensembles have a pion mass mπ = 270 MeV and a lattice spacing of
a= 0.0658 fm with Nf = 2 O(a)-improved Wilson fermions.

1Generated by Tim Harris using openQCD 2.4.2 [Lüscher et al. (2012-2023)]
2CLS lattice from Ref. [CLS (2012-2023)]
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Relative variances: G7 2.1 3.2 4.2 6.2 fm
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Figure: Relative variance for LMA (left) and MG LMA (right) to the vector
correlator with one stochastic source for each term.

Main message

We observe a significant variance contribution
from the cheap-to-evaluate L1-term w.r.t LMA.
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Absolute variances: G7 2.1 3.2 4.2 6.2 fm
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Figure: Absolute variances for LMA (left) and MG LMA (right) to the vector
correlator with one stochastic source for each term. The black line is the gauge
variance.

Main message

We are able to push the remaining L0 noise down
to the gauge noise using only a few stochastic
sources.
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Variance vs. sources: G7 2.1 3.2 4.2 6.2 fm
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Figure: Absolute variances for LMA (left) and MG LMA (right) against number of
stochastic sources Nst. The black line is the gauge variance.
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Variance vs. volume
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Figure: Absolute variances for LMA (left) and MG LMA (right) against the lattice
extent L. The black line is the gauge variance.

Main message

MG LMA with a constant number of low modes
scales well with the volume.
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Cost - G7 2.1 3.2 4.2 6.2 fm

Table: Cost breakdown to reach the gauge variance for G7 (4.2 fm).

Estimator # modes # sources meas. cost1 model cost1

Stochastic 0 L0: 4096 16384 16384
LMA2 50 L0: 2048 8192 8192

2-lvl MG LMA2 50 L0:
L1:

16⋆

2048⋆⋆⋆ 557.8 80.7

4-lvl MG LMA2 50
L0:
L1:
L2:

1⋆
16⋆⋆

1024⋆⋆⋆
466.7 14.4

My implementation:

⋆ fine-grid 128×643 inv: 11.1±0.4 sec (iter: 46.53±0.23)
⋆⋆ coarse-grid 32× 163 inv: 37.3±2.4 sec (iter: 1417±22)

⋆⋆⋆ coarse-grid 16×83 inv: 0.667±0.041 sec (iter: 502.1±5.8)
1Unit = fine-grid inversions.
2Cost of determination of low modes not included (or add 100 - 200 to the cost).
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Concluding summary

Subspaces based on domain-decomposed / coarsened low modes
Correlator decomposition into-MG levels
Method can be defined recursively
Every level-contribution → separate statistics
50 low modes capture all the variance (independent of the lattice
volume!)
Fewer low modes & more variance contribution than LMA

Key idea

Hierarchical evaluation: noisy part is cheaper to evaluate!
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Backup slide: Detailed setups

Estimator # modes Sources Levels
Stochastic N/A semwall L0: only fine-grid

LMA 50 semwall L0: (rest-rest + rest-eigen)
exact L1: (eigen-eigen)

2-level MG LMA 50 semwall L0: fine-grid
L1: block size 84

3-level MG LMA 50 semwall L0: fine-grid
L1: block size 84

exact L2: (eigen-eigen)

4-level MG LMA 50 semwall
L0: fine-grid
L1: block size 44

L2: block size 84

exact L3: (eigen-eigen)
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Relative variances: E7 2.1 3.2 4.2 6.2 fm
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Figure: Relative variance for LMA (left) and MG LMA (right) to the vector
correlator with one stochastic source for each term.

Main message

We observe a significant variance contribution
from the cheap-to-evaluate L1-term w.r.t LMA.
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Absolute variances: E7 2.1 3.2 4.2 6.2 fm
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Figure: Absolute variances for LMA (left) and MG LMA (right) to the vector
correlator with one stochastic source for each term. The black line is the gauge
variance.

Main message

We are able to push the remaining L0 noise down
to the gauge noise using only a few stochastic
sources.
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Variance vs. sources: E7 2.1 3.2 4.2 6.2 fm
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Figure: Absolute variances for LMA (left) and MG LMA (right) against number of
stochastic sources Nst. The black line is the gauge variance.
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Figure: Absolute variances for LMA (left) and MG LMA (right) against number of
stochastic sources Nst. The black line is the gauge variance.
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stochastic sources Nst. The black line is the gauge variance.

� ]
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Cost - E7 2.1 3.2 4.2 6.2 fm

Table: Cost breakdown to reach the gauge variance for E7 (2.1 fm).
Estimator # modes # sources meas. cost1 model cost1

Stochastic 0 L0: 1024 4096 4096
LMA2 50 L0: 16 64 64

2-lvl MG LMA2 50 L0:
L1:

1⋆
1024⋆⋆ 100.4 12.3

3-lvl MG LMA2 50 L0:
L1:

1⋆
16⋆⋆ 5.5 4.1

My implementation:

⋆ fine-grid 64×323 inv: 5.32±0.03 sec (iter: 35.65±0.15)
⋆⋆ coarse-grid 8×43 inv: 0.125±0.000 sec (iter: 140.5±0.3)

1Unit = fine-grid inversions.
2Cost of determination of low modes not included (or add 100 - 200 to the cost).
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Cost - F7 2.1 3.2 4.2 6.2 fm

Table: Cost breakdown to reach the gauge variance for F7 (3.2 fm).
Estimator # modes # sources meas. cost1 model cost1

Stochastic 0 L0: 2048 8192 8192
LMA2 50 L0: 1024 4096 4096

2-lvl MG LMA2 50 L0:
L1:

16⋆

2048⋆⋆ 462.3 80.7

3-lvl MG LMA2 50 L0:
L1:

16⋆

1024⋆⋆ 263.2 72.3

My implementation:

⋆ fine-grid 96×483 inv: 8.42±0.04 sec (iter: 43.77±0.15)
⋆⋆ coarse-grid 12×63 inv: 0.409±0.002 sec (iter: 337.6± 1.3)

1Unit = fine-grid inversions.
2Cost of determination of low modes not included (or add 100 - 200 to the cost).
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Cost - G7 2.1 3.2 4.2 6.2 fm

Table: Cost breakdown to reach the gauge variance for G7 (4.2 fm).

Estimator # modes # sources meas. cost1 model cost1

Stochastic 0 L0: 4096 16384 16384
LMA2 50 L0: 2048 8192 8192

2-lvl MG LMA2 50 L0:
L1:

16⋆

2048⋆⋆⋆ 557.8 80.7

4-lvl MG LMA2 50
L0:
L1:
L2:

1⋆
16⋆⋆

1024⋆⋆⋆
466.7 14.4

My implementation:

⋆ fine-grid 128×643 inv: 11.1±0.4 sec (iter: 46.53±0.23)
⋆⋆ coarse-grid 32× 163 inv: 37.3±2.4 sec (iter: 1417±22)

⋆⋆⋆ coarse-grid 16×83 inv: 0.667±0.041 sec (iter: 502.1±5.8)
1Unit = fine-grid inversions.
2Cost of determination of low modes not included (or add 100 - 200 to the cost).
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