Three-particles Aharonov-Bohm effect

From one to two in QM

The amplitude depends on the indistinguishability.

Two-photon interference

Photons recognize the indistinguishability?

Information-dependent quantum state description

$$|\Psi\rangle_{AB} = \frac{1}{\sqrt{2}} \left(|\uparrow\rangle_A \left|\downarrow\rangle_B + \left|\downarrow\rangle_A \left|\uparrow\rangle_B\right)\right.$$

1. When Alice measures the spin, Alice can evaluate Bob's spin state.

$$|\psi\rangle_{B,\text{Alice thinks}} = |\uparrow\rangle_B \text{ or } |\downarrow\rangle_B$$

2. When Bob evaluate his own state,

$$\rho_{B,\text{Bob thinks}} = \frac{1}{2} \left(\left| \uparrow \right\rangle \left\langle \uparrow \right| + \left| \downarrow \right\rangle \left\langle \downarrow \right| \right)$$

Today's main question

Is there the information-dependent indistinguishability setup?

Aharonov-Bohm effect interference

Three indistinguishable charged particles

Transition probability with AB effect $P \propto |\cos(\pi \Phi/\phi_0)|^2 = (1 + \cos(2\pi \Phi/\phi_0))/2$

Experimental feasibility: Ion-trap experiment w/ Paul trap

$$U = \sum_{i} \sum_{k=x,y,z} \frac{1}{2} m \omega_k^2 u_{k,i}^2 + \sum_{i,j} \frac{e^2}{4\pi\epsilon_0} r_{i,j}^{-1}$$

The collective motion of ions can be cooled down into the motional ground state.

Atsushi Noguchi moved to The University of Tokyo.

Collective motion (=phonon) frequency

Potential of 3 ions

'Down'

'Up'

Quantum tunneling rotor as an interferometer

Two directional rotations cannot be distinguished.

Anti-

Clockwise

Quantum tunneling rotor as an interferometer

Two directional rotations cannot be distinguished.

(E)

 $Je^{i\theta/6}$

Experimental Procedures

For laser cooling

Quantum tunneling

Experimental demonstration: AB effect interference

A. Noguchi, YS, K. Toyoda, and S. Urabe, Nat. Comm. **5**, 3868 (2014). First demonstration on AB effect w/ quantum tunneling

AB effect phase shift can lead to the change of transition probability.

Is this the time crystal? = spontaneous symmetry breaking in time

F. Wilczek,
PRL 109, 160401 (2012)
T. Li et al.,
PRL 109, 163001 (2012)

M, q

 $H = \frac{2\hbar^2}{Md^2} \left[\left(-i\frac{\partial}{\partial q_1} - \sqrt{N\alpha} \right)^2 + \sum_{i=2}^N \left(-\frac{\partial^2}{\partial q_i^2} + \eta^2 \omega_j^2 q_j^2 \right) \right]$

$$E_{n_1} = E^* (n_1 - \alpha)^2 = \frac{2N\hbar^2}{Md^2} (n_1 - \alpha)^2,$$

$$\omega_{n_1} = \omega^* (n_1 - \alpha) = \frac{4\hbar}{Md^2} (n_1 - \alpha),$$

Spontaneous symmetry breaking in time? = creation of unidirectional rotation

This theory seems to contradict our observed interreference?

How to detect the rotational direction?

<u>Identical particles</u> cannot be distinguished.

Feasibility: local spin flipping / isotope control

Returning the question

Information-dependent indistinguishability setup?

Situation 1: one label & triangle obs.

Situation 2: one label & local obs.

 $\theta = 3 \times 2\pi \Phi/\phi_0$ Identical particle $\theta = 2 \times 2\pi \Phi/\phi_0$ $Je^{i\theta/6}$ $i\theta/6$ $P \propto |\cos\theta/6|^2$ $1 + \cos\left(\frac{2\pi\Phi}{3\phi_0}\right)$

Situation 3: one label & local obs. w/ observer dependent description

Conclusion and Outlooks

- We propose the information-dependent indistinguishability experimental setup by the Aharonov-Bohm interference with ion trap.
- The discussion on no apparent observation of the time crystal is needed.
 - Under discussion w/ David Wineland
- On the isotope control, the experimental feasibility of the Wigner crystal should be discussed.
- How to affect many-body physics?