TOWARDS AN AXION SEARCH EXPERIMENT USING QUANTUM SENSING OF MAGNONS

RESEARCH AND DEVELOPMENT

15TH INTERNATIONAL WORKSHOP ON FUNDAMENTAL PHYSICS USING ATOMS

14 MARCH 2024

YAMAN SINGH SHRESTHA, UNIVERSITY OF TOKYO

Akito Kusaka,University of TokyoKenji Kiuchi,University of TokyoYasunobu Nakamura,University of TokyoKeisuke Kato,University of Tokyo

研究拠点形成事業 Core-to-Core Program

1. Axions search with magnon

2. Overcoming Standard Quantum Limit with

qubit

3. R&D @ Kusaka lab

@ Kusaka lab DR Copper Cavity with \$\phi I mm YIG\$ YIG (\$\phi I mm\$) TIG (\$\phi I mm\$) Umber Strain Domain

Cryogenic readout of magnon

- Kittel mode (magnon) readout through microwave cavity (photon)
- DR-cooled below 100 mK
- Sensitivity limited by cryogenic amplifier noise

MAGNON READOUT WITH CAVITY-KITTEL

Cavity-magnon hybrid

NVENTIONAL AXION SEARCH (WITH CAVITY-KITTEL MODE HYBRID) 20 mm Coupled Harmonic Resonator Model for cavity – Kittel mode hybrid Kittel Cavity Readout mode Coupling through С m Axion amplified ω_c ω_m **RF** line 2π 2π

Detection scheme

Photon

Magnon

Axion

Quantum Limited

Readout

5

CONVENTIONAL AXION SEARCH (WITH CAVITY-KITTEL MODE HYBRID)

6

Coupled Harmonic Resonator Model for cavity – Kittel mode hybrid

SUPERCONDUCTING QUBIT AS MAGNON COUNTER

Qubit-Kittel mode hybrid

Magnon number dependent Qubit frequency:

 $\omega_a^{n_m} = \left(\omega_q + 2\chi_{q-m}n_m\right)$

Experimental setup

SUPERCONDUCTING QUBIT AS MAGNON COUNTER

Measurement of magnon number with qubit

Unconstrained by SQL

Magnon number dependent Qubit frequency:

 $\omega_q^{n_m} = \left(\omega_q + 2\chi_{q-m}n_m\right)$

IMPROVING Axion Sensitivity

INCREASE YIG VOLUME

OVERCOME STANDARD QUANTUM LIMIT WITH QUBITS

R&D@ KUSAKALAB

OUR R&D GOALS

We are working to build a Kittel mode – superconducting qubit hybrid system for BSM particle (axions, hidden photons, gravitons) search.

1. BUILD KITTEL MODE – CAVITY HYBRID Reflectance of cavity measured with VNA

- <u>Two peaks of cavity</u> – Kittel mode hybrid system.
 - (single cavity peak in absence of hybridization)

2. INCREASE VOLUME OF YIG

Appearance of undesirable higher modes due to nonuniform magnetic field

frequency (GHz)

2 mm

(10 mm Yoke)

10 mm

 $\phi \mid mm$

YIG

2. IMPROVED FIELD UNIFORMITY **FOR LARGER YIG**

NEXT STEPS

 \rightarrow Kittel mode - cavity -

superconducting qubit hybrid with **<u>2 mm YIG</u>**

• cf. current design has 0.5 mm YIG

Future improvement in volume

SUMMARY

- □ Axion search is possible through magnons
- Current search constrained by Standard Quantum Limit
- Superconducting Qubit offers way to overcome Standard Quantum Limit
- R & D on-going to optimize the superconducting qubit – Kittel mode (magnon) system for particle searches.

Current instrument

8

Improved DAQ

