# Pulsed laser spectroscopy of Muonium **1S-2S transition in J-PARC**



S.Kamioka<sup>2</sup>, N. Kawamura<sup>2</sup>, A. Koda<sup>2</sup>, Y. Mao<sup>3</sup>, T. Masuda<sup>1</sup>, T. Mibe<sup>2</sup>, Y. Miyake<sup>2</sup>, Y. Miyamoto<sup>1</sup>, Y. Oishi<sup>2</sup>, M. Otani<sup>2</sup>, W. Saga<sup>1</sup>, P. Strasser<sup>2</sup>, K. Shimomura<sup>2</sup>, K. Suzuki<sup>6</sup>, S. Sugiyama<sup>6</sup>, S. Uetake(PI)<sup>1</sup>, T. Yamazaki<sup>2</sup>, K. Yoshimura<sup>1</sup>, M. Yoshida<sup>2</sup>, M. Yotsuzuka<sup>6</sup> and C. Zhang<sup>3</sup>

Affiliation: <sup>1</sup>*RIIS, Okayama University (Japan), <sup>2</sup>KEK, <sup>3</sup>Peking University, <sup>4</sup>RIKEN, <sup>5</sup>University of British Columbia, <sup>6</sup>Nagoya University* 

# **Introduction:** Spectroscopy Mu1S-2S for determining muon mass

#### Mu(Muonium)

- Consists of a positive muon and an electron
- **Purely leptonic system**
- No concerns of the charge radius of the nucleus
- Long life time among exotic atoms



Hydrogen Mu Positronium  $\tau = 2.2 \ \mu s$  $\tau = 142$  ns (ortho) Validation of the Standard Model with muon

Proton

- e.g.1)Muon g-2 experiment<sup>[1]</sup>  $a_{\mu} = \frac{\omega_a}{\omega_p} \frac{\mu_{\mu}}{\mu_e} \frac{m_e}{m_{\mu}} \frac{g_e}{2}$
- e.g.2)MuSEUM experiment[2]  $\Delta \nu_{HFS} = \frac{16}{3} \alpha^2 R_{\infty} \frac{\mu_{\mu}}{\mu_{e}} \left(1 + \frac{m_{e}}{m_{\mu}}\right)^{-1}$
- The improvement of the muon mass accuracy Enables more strong verification of SM.

[1]B. Abi et al., Phys. Rev. Lett. 126, 141801 (2021)  $ppb=10^{-9}$ [2] S. Nishimura et al., Phys. Rev. A 104, L020801 (2021) X2018 CODATA

## **Production of Mu**



Relative **Physical constant** uncertainty [ppb] 22 Muon mass:  $m_{\mu}$ Electron mass:  $m_e$ 0.3 0.15 Fine-structure constant :  $\alpha$ Muon magnetic 22 moment :  $\mu_{\mu}$ Electron magnetic 0.3 moment:  $\mu_e$ 

 $e^+$ 

- Objective  $\Delta v_{1S 2S}$  uncertainty: 10 kHz (=  $m_{\mu}$  uncertainty 1 ppb)
- →impact on verification of the Standard Model

[3]K. P. Jungmann J. Phys Soc. Jpn. 85, 091004 (2016)

#### 244 nm Laser Status



- Generate 976 nm pulsed light from Ti:Sapphire crystal
- Convert the wavelength to 244 nm by two SHGs
- Pulse duration : ~ 57 nsec
- Linewidth : ~ 6 MHz at 976 nm (close to Fourier transform limit)
- Productivity of Muonium is improved by laser ablation of aerogel target[5].
- ~2.4% of muon yield into vacuum as Mu.(Simulation[6]) [5] G. A. Beer et al., Prog. Theor. Exp. Phys. 2014, 09C01 [6]Ce. Zhang et al. ,JPS Conf Proc. 33, 011125 (2021)



## **Recent result of Mu1S-2S Spectroscopy**



- Ionized Mu signal rate: >0.15/sec, more than 60 times higher than a previous result in RAL(2000)
- Resonance width is a factor of 1/2 narrower  $F=0\rightarrow 0$ :
- **First observation** due to the higher signal rate

# Prospects

#### 244 nm pulse laser

 $|2S\rangle$ 

Mu ionization process is twophoton + one-photon transition

Silica aerogel

- Laser is counterpropagating with  $\bullet$ an end mirror
- Operated at J-PARC MLF, Japan  $|1S\rangle$

#### J-PARC MLF

- World's highest intensity pulsed muon beam source
- ~6.8 × 10<sup>4</sup>  $\mu$ /pulse beam is available at S2 area.  $(0.35 \times 10^4 \,\mu/\text{pulse} \text{ at RAL in } 2000[4])$

Ionization  $(\mu^+ + e^-)$ 244 nm 244 nm

at J-PARC MLF S-line S2 area, Japan

Aiming to determine the transition frequency at **1 MHz** accuracy.

|       | Uncertainty           | RAL(2000) |                                         |
|-------|-----------------------|-----------|-----------------------------------------|
| Stat. |                       | 9.1 MHz   | < 1 MHz is achievable owing to high sig |
|       | Frequency calibration | 0.8 MHz   | <0.1 MHz w/ a Fiber comb                |
|       | Stability of lock     | 0.5 MHz   | <0.1 MHz w/ a Fiber comb                |
| Syst. | Residual doppler      | 3.4 MHz   | <0.1 Optical cavity                     |
|       | Line shape            | 1.2 MHz   | imes 1/2 narrower linewidth             |

#### Summary

- 1S-2S transitions both of F=1 and F=0 have been observed
- Pulsed laser spectroscopy of 1 MHz precision will be performed **Acknowledgements**

This work was supported by JSPS KAKENHI Grant Numbers JP19H05606, JP20H05625, JP18H05226, and JP21K13944; MEXT Quantum Leap Flagship Program (MEXT Q-LEAP) Grant Number JPMXS0118069021;JST SPRING Grant Number JPMJSP2126; Sumitomo foundation; **OHMOTO-IKUEIKAI** foundation.