Connecting theories of flavour to Kaon physics

Marzia Bordone

Kaons@J-PARC 2024 J-PARC 27.07.2024

Outline:

- 1. General Introduction to the Flavour Problem
- 2. Effective Field Theories for BSM
- 3. Explicit BSM examples

Despite the SM successes, there are open problems:

Despite the SM successes, there are open problems:

(Hierarchy problem) dark matter/dark energy) flavour hierarchies neutrino masses gravity

The (two) flavour problems

- 1. The SM flavour problem: The measured Yukawa pattern doesn't seem accidental
 - \Rightarrow Is there any deeper reason for that?

- 2. The NP flavour problem: If we regard the SM as an EFT valid below a certain energy cutoff Λ , why don't we see any deviations in flavour changing processes?
 - \Rightarrow Which is the flavour structure of BSM physics?

$$\mathcal{L}_{\text{Yukawa}} \supset Y_u^{ij} \bar{Q}_L^i H u_R^j$$

$$\mathcal{L}_{\text{Yukawa}} \supset Y_u^{ij} \bar{Q}_L^i H u_R^j$$

Exact $U(2)^n$ limit

 $\mathcal{L}_{\text{Yukawa}} \supset Y_u^{ij} \bar{Q}_L^i H u_R^j$

An approximate $U(2)^n$ is acting on the light families!

 $\mathcal{L}_{\text{Yukawa}} \supset Y_u^{ij} \bar{Q}_L^i H u_R^j$

An approximate $U(2)^n$ is acting on the light families!

• In the SM: accidental $U(3)^5 \rightarrow \text{approx } U(2)^n$

- In the SM: accidental $U(3)^5 \rightarrow \text{approx } U(2)^n$
- What happens when we switch on NP?

no breaking of the $U(2)^n$ flavour symmetry at low energies

What's the problem for BSM?

What's the problem for BSM?

What's the problem for BSM?

How to satisfy all the constraints at the same time?

Effective Field Theories for BSM

The EFT approach

- Since we haven't observed any clear sign of NP yet at low energies, we can work in an EFT context
 - ⇒ Agnostic of the nature of new physics, describe more than one UV model with the same operators
 - ⇒ Try to derive model-independent bounds
- · We use the SMEFT
 - \Rightarrow Build all possible operators with SM fields and respecting SM symmetries
- The remnant of high-energy new physics is contained in the Wilson Coefficients
 - \Rightarrow With flavour, we have a lot of free degrees of freedom
 - \Rightarrow We need a criterium to infer their magnitude

The $U(2)^n$ symmetry for BSM

$$q_{3L} \sim (\mathbf{1}, \mathbf{1}) \qquad \qquad \ell_{3L} \sim (\mathbf{1}, \mathbf{1}) \\ Q_L = (Q_L^1, Q_L^2) \sim (\mathbf{\bar{2}}, \mathbf{1}) \qquad \qquad L_L = (\ell_L^1, \ell_L^2) \sim (\mathbf{1}, \mathbf{\bar{2}})$$

Unbroken $U(2)^5$

The $U(2)^n$ symmetry for BSM

$$\begin{array}{ll} q_{3L} \sim ({\bf 1},{\bf 1}) & \ell_{3L} \sim ({\bf 1},{\bf 1}) \\ Q_L = (Q_L^1,Q_L^2) \sim ({\bf \bar 2},{\bf 1}) & L_L = (\ell_L^1,\ell_L^2) \sim ({\bf 1},{\bf \bar 2}) \\ V_q \sim ({\bf 2},{\bf 1}) & V_\ell \sim ({\bf 1},{\bf 2}) \end{array}$$

Unbroken
$$U(2)^5$$

 $Y_u = y_t \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$
 $\overline{q}_{3L} \Gamma q_{3L} \checkmark$
 $\overline{q}_{3L} \Gamma Q \checkmark$

Soft symmetry breaking

$$Y_u = y_t \begin{pmatrix} \Delta & V_q \\ 0 & 1 \end{pmatrix}$$

 $\bar{q}_{3L}\Gamma q_{3L}\checkmark$

$$\bar{q}_{3L}\Gamma(V_qQ)\checkmark$$

Which operators?

$$\mathcal{L}_{\rm eff} = -\frac{1}{\Lambda^2} (\bar{q}_{3L} \gamma_\mu \sigma^a q_{3L}) (\bar{\ell}_{3L} \gamma^\mu \sigma^a \ell_{3L}) - \frac{c_{13}}{\Lambda^2} (\bar{q}_{3L} \gamma_\mu q_{3L}) (\bar{\ell}_{3L} \gamma^\mu \ell_{3L})$$

Which operators?

$$\mathcal{L}_{\text{eff}} = -\frac{1}{\Lambda^2} (\bar{q}_{3L} \gamma_\mu \sigma^a q_{3L}) (\bar{\ell}_{3L} \gamma^\mu \sigma^a \ell_{3L}) - \frac{c_{13}}{\Lambda^2} (\bar{q}_{3L} \gamma_\mu q_{3L}) (\bar{\ell}_{3L} \gamma^\mu \ell_{3L})$$

$$SU(2) \text{ triplet} \qquad SU(2) \text{ singlet}$$

Which operators?

$$\mathcal{L}_{\text{eff}} = -\frac{1}{\Lambda^2} (\bar{q}_{3L} \gamma_\mu \sigma^a q_{3L}) (\bar{\ell}_{3L} \gamma^\mu \sigma^a \ell_{3L}) - \frac{c_{13}}{\Lambda^2} (\bar{q}_{3L} \gamma_\mu q_{3L}) (\bar{\ell}_{3L} \gamma^\mu \ell_{3L})$$

$$SU(2) \text{ triplet} \qquad SU(2) \text{ singlet}$$

Left-handed fields only

 \Rightarrow Only ones contributing to di-neutrino modes without considering right-handed u

•
$$q_{3L} \equiv q_L^b + \theta_q e^{i\phi_q} \hat{V}_q^\dagger \cdot Q_L$$

 $q_L^b = \begin{pmatrix} V_{j3}^* u_L^j \\ b_L \end{pmatrix} \qquad Q_L^i = \begin{pmatrix} V_{ji}^* u_L^j \\ d_L^i \end{pmatrix} \qquad \hat{V}_q \equiv (V_{td}^*, V_{ts}^*)$

 $\Rightarrow \theta_q$ and ϕ_q are small mixing angles

Correlations among all these modes is essential to prove NP scenarios

Observables: $R_{D^{(*)}}$

$$R_{D^{(*)}} = \frac{\mathcal{B}(B \to D^{(*)}\tau\bar{\nu})}{\mathcal{B}(B \to D^{(*)}\ell\bar{\nu})}$$

- Test of Lepton Flavour Universality between the 3rd and light lepton families
- Ratios allow cancelling hadronic uncertainties and experimental uncertainties

$$\Delta R_{D^{(*)}} = \left[\frac{R_{D^{(*)}}}{R_{D^{(*)}}^{\rm SM}} - 1\right] \approx 2R_0(1 - \theta_q \cos \phi_q) \qquad R_0 = \frac{1}{\Lambda^2} \frac{1}{\sqrt{2}G_F}$$

Observables: $B^+ \to K^+ \nu \bar{\nu}$

[2311.14647]

Hadronic Tagging

$$\mathcal{B}(B^+ \to K^+ \nu \bar{\nu}) = (1.1^{+0.9+0.8}_{-0.8-0.5}) \times 10^{-5}$$

Inclusive Tagging

 $\mathcal{B}(B^+ \to K^+ \nu \bar{\nu}) = (2.7 \pm 0.5 \pm 0.5) \times 10^{-5}$

Combined

 $\mathcal{B}(B^+ \to K^+ \nu \bar{\nu}) = (2.7 \pm 0.5^{+0.5}_{-0.4}) \times 10^{-5}$

Average Belle II (362 fb⁻¹, combined) Belle II (362 fb⁻¹, hadronic) Belle II (362 fb⁻¹, inclusive) Belle (711 fb⁻¹, semileptonic) 1.0±0.6 PRD96, 091101 Belle (711 fb⁻¹, hadronic) 2.9+1.6 PBD87, 111103 BABAR (418 fb⁻¹, semileptonic 0.2±0.8 PRD82, 112002 BABAR (429 fb⁻¹, hadronic) 1.5+1.3 PRD87, 112005 0 4 6 8 10 $10^5 \times \operatorname{Br}(B^+ \to K^+ \nu \overline{\nu})$

 $3.5\,\sigma$ evidence wrt background only $2.7\,\sigma$ tension wrt SM

Observables: $B^+ \to K^+ \nu \bar{\nu}$

- From the theory point of view, the $B^+ \to K^+ \nu \bar{\nu}$ mode is very clean
 - No charm pollution
 - Pollution from $B \to \tau (\to K\nu)\bar{\nu}$, but removable experimentally
 - · Very precise, already hitting the wall with precision

$$\frac{\mathcal{B}(B \to K^{(*)}\nu\bar{\nu})}{\mathcal{B}(B \to K^{(*)}\nu\bar{\nu})_{\rm SM}} = \left[\frac{2}{3} + \frac{1}{3}\left|1 - \frac{\pi s_w^2 \Delta R_{D^{(*)}}}{2\alpha X_t (1 - \theta_q \cos \phi_q)} \theta_q e^{i\phi_q} (1 - c_{13})\right|^2\right]$$

Observables: $B^+ \to K^+ \nu \bar{\nu}$

- From the theory point of view, the $B^+ \to K^+ \nu \bar{\nu}$ mode is very clean
 - No charm pollution
 - Pollution from $B \to \tau (\to K\nu)\bar{\nu}$, but removable experimentally
 - · Very precise, already hitting the wall with precision

$$\frac{\mathcal{B}(B \to K^{(*)}\nu\bar{\nu})}{\mathcal{B}(B \to K^{(*)}\nu\bar{\nu})_{\rm SM}} = \left[\frac{2}{3} + \frac{1}{3}\left|1 - \frac{\pi s_w^2 \Delta R_{D^{(*)}}}{2\alpha X_t (1 - \theta_q \cos \phi_q)} \theta_q e^{i\phi_q} (1 - c_{13})\right|^2\right]$$

distinguishes among UV models

Kaon decays

$$\frac{\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})}{\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})_{\rm SM}} = \frac{2}{3} + \left| \frac{1}{3} + \frac{\Delta R_{D^{(*)}} \theta_q^2 (1 - c_{13})}{2(\alpha/\pi) C_{sd,\tau}^{\rm SM,eff} (1 - \theta_q \cos \phi_q)} \right|^2$$

$$\frac{\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu})}{\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu})_{\rm SM}} = \frac{2}{3} + \left| \frac{1}{3} - \frac{\Delta R_{D^{(*)}} \theta_q^2 (1 - c_{13})}{2(\alpha/\pi)(X_t/s_w^2)(1 - \theta_q \cos \phi_q)} \right|^2$$

- Same proportionality to $\Delta R_{D^{(*)}}$ as in $B \to K \nu \bar{\nu}$
- Same CKM structure as in the SM
- We have a large interference also for the $K_L \rightarrow \pi^0 \nu \bar{\nu}$ decay

Kaon decays

$$\frac{\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})}{\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})_{\rm SM}} = \frac{2}{3} + \left| \frac{1}{3} + \frac{\Delta R_{D^{(*)}} \theta_q^2 (1 - c_{13})}{2(\alpha/\pi) C_{sd,\tau}^{\rm SM,eff} (1 - \theta_q \cos \phi_q)} \right|^2$$

$$\frac{\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu})}{\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu})_{\rm SM}} = \frac{2}{3} + \left| \frac{1}{3} - \frac{\Delta R_{D^{(*)}} \theta_q^2 (1 - c_{13})}{2(\alpha/\pi)(X_t/s_w^2)(1 - \theta_q \cos \phi_q)} \right|^2$$

- Same proportionality to $\Delta R_{D^{(*)}}$ as in $B \to K \nu \bar{\nu}$
- Same CKM structure as in the SM
- We have a large interference also for the $K_L \rightarrow \pi^0 \nu \bar{\nu}$ decay

- Currently, the NA62 limits are not enough to ping down a specific parametric window
- KOTO-II sensitivity at 25% of the measured branching fraction
 - Hypothesis: $\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu})_{exp} = 1.3 \mathcal{B}(K_L \to \pi^0 \nu \bar{\nu})_{SM}$
- NA62 projection at 15% with current ${\cal B}$ measured central value

- Currently, the NA62 limits are not enough to ping down a specific parametric window
- KOTO-II sensitivity at 25% of the measured branching fraction
 - Hypothesis: $\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu})_{exp} = 1.3 \mathcal{B}(K_L \to \pi^0 \nu \bar{\nu})_{SM}$
- NA62 projection at 15% with current B measured central value

- Blue lines: $K^+ \to \pi^+ \nu \bar{\nu}$, red lines: $K_L \to \pi^0 \nu \bar{\nu}$
- $\Delta R_{D^{(*)}}$ fixed to its central value
- filled: $c_{13} = 0 \phi_q = 0$, dashed $c_{13} = 2 \phi_q = \pi$
- "Model" allows for large modifications, NA62 and KOTO-II updates are essential to constrain the parameter space

• Blue lines: $K^+ \to \pi^+ \nu \bar{\nu}$, red lines: $K_L \to \pi^0 \nu \bar{\nu}$

- $\Delta R_{D^{(*)}}$ fixed to its central value
- filled: $c_{13} = 0 \phi_q = 0$, dashed $c_{13} = 2 \phi_q = \pi$
- "Model" allows for large modifications, NA62 and KOTO-II updates are essential to constrain the parameter space

Correlation with *B***-physics**

If In this setup, the relative shift to fit R_D and R_{D^*} is the same

$$\Delta R_{D^{(*)}} = \left[\frac{R_{D^{(*)}}}{R_{D^{(*)}}^{\rm SM}} - 1\right] = 0.133 \pm 0.036$$

- Filled lines: K⁺ → π⁺νν
 , Dashed lines: K_L → π⁰νν
- In all scenarios $c_{13} = 0 \phi_q = 0$
- Blue: $\theta_q = 0.6$, red $\theta_q = -1$, green $\theta_q = 0.3$

Correlation with *B***-physics**

If In this setup, the relative shift to fit R_D and R_{D^*} is the same

$$\Delta R_{D^{(*)}} = \left[\frac{R_{D^{(*)}}}{R_{D^{(*)}}^{\rm SM}} - 1\right] = 0.133 \pm 0.036$$

- Filled lines: K⁺ → π⁺νν
 , Dashed lines: K_L → π⁰νν
- In all scenarios $c_{13} = 0 \phi_q = 0$
- Blue: $\theta_q = 0.6$, red $\theta_q = -1$, green $\theta_q = 0.3$

KOTO-II is essential to select the parameter space

Fit to di-neutrino modes

• Fit assuming the current central value for $\Delta R_{D^{(*)}}$ and $c_{13} = 0.5$

- ⇒ Excellent fit quality
- We predict

$$\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu}) = (6.7 \pm 1.8) \times 10^{-11}$$

testable at 2σ at KOTO-II

Fit to di-neutrino modes

• Fit assuming the current central value for $\Delta R_{D^{(*)}}$ and $c_{13} = 0.5$

- ⇒ Excellent fit quality
- We predict

$$\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu}) = (6.7 \pm 1.8) \times 10^{-11}$$

testable at 2σ at KOTO-II

Explicit BSM examples

Which NP particle?

1) Colourless Mediators

• W' + Z': tension with high- p_T searches with $\tau_L \tau_L$ or $b_L b_L$ final states

[Greljo,Isidori,Marzocca,'15]

• Solutions with right-handed neutrino are motivated and help to ease the tension with $b \rightarrow c \tau \nu$ data but they are most likely to be excluded from high- p_T [Greijo, Camalich,Ruiz-Alvarez,18]

2) Leptoquark Mediators

Model	$R_{K^{(\ast)}}$	$R_{D^{(\ast)}}$	$R_{K^{(*)}} \ \& \ R_{D^{(*)}}$
S_1	X *	<	X *
R_2	X *	<	×
$\widetilde{R_2}$	×	×	×
S_3	✓	×	×
U_1	 	 Image: A start of the start of	✓
U_3	✓	×	×

S_1	$\sim (\bar{3}, 1, 1/3)$
S_3	$\sim (\mathbf{\bar{3}}, 3, 1/3)$
U_1	\sim (3, 1, 2/3)

[Angelescu, Bečirević, Faroughy , Sumensari, '18]

Flavour Non-Universal New Physics

Energy

The Pati-Salam Leptoquark

 $G_i = SU(4)^i \times SU(2)_L^i \times SU(2)_R^i$

The Pati-Salam Leptoquark

 $G_i = SU(4)^i \times SU(2)^i_L \times SU(2)^i_R$

$G_{12} \times G_3 \Rightarrow SM + U_1 + Z'$

The Pati-Salam Leptoquark

 $G_i = SU(4)^i \times SU(2)_L^i \times SU(2)_R^i$

Large couplings to third generation

+other (heavy) states that depend on the details of the model in the UV

Phenomenology

- The Z' mediates neutral meson mixing at tree-level
 - ⇒ Suppressed parametrically
- The U_1 LQ has tree level matching $c_{13}=1,$ no tree-level contribution to $s\to d\nu\bar{\nu}$
- · However, there are loop contributions

- The loop doesn't preserve the U(2) CKM structure
- The contribution to $K_L \rightarrow \pi \nu \bar{\nu}$ is negligible

The scalar leptoquarks $S_1 + S_3$

- Scalar leptoquarks don't require a UV completion
- They both contribute at tree-level to $s \rightarrow d\nu \bar{\nu}$ transitions such as

$$c_{13}|_{S_1} = \frac{1}{2}$$
 $c_{13}|_{S_3} = \frac{1}{2}$

• Sweet spot to connect to $B^+ \to K^+ \nu \bar{\nu}$

Conclusions

- Flavour physics has exciting prospects in the search for New Physics
- Understanding the origin of the Flavour Puzzle might hint at what structure new physics couplings have
- Correlations among different observables are crucial to studying the viability of classes of models
 - $\Rightarrow\,$ Di-neutrino modes are one of the golden modes where to look for new physics signals
 - ⇒ The complementarity between measurements $B^+ \to K^+ \nu \bar{\nu}$, $K^+ \to \pi^+ \nu \bar{\nu}$ and $K_L \to \pi^0 \nu \bar{\nu}$ are essential to ping down specific scenarios

Appendix

Flavour Non-Universal New Physics

Dvali, Shifman, '00 Panico, Pomarol, '16 <u>MB</u>, Cornella, Fuentes-Martin, Isidori '17 Allwicher, Isidori, Thomsen '20 Barbieri, Cornella, Isidori, '21 Davighi, Isidori '21

Basic idea:

- 1st and 2nd have small masses and small couplings to NP because they are generated by dynamics at a heavier scale
- 3rd generation is linked to dynamics at lower scales and has stronger couplings

Flavour deconstruction:

fermion families interact with different gauge groups and flavour hierarchies emerge as accidental symmetries