Strategies to test beyond the Standard Model with rare Kaon decays

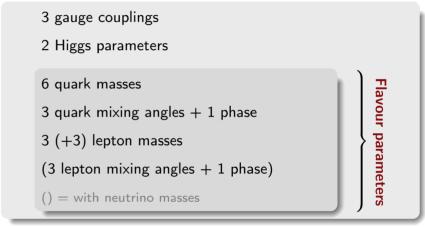
Nazila Mahmoudi

Based on 2206.14748, 2311.04878, 2404.03643 & work in progress In collaboration with G. D'Ambrosio, A. Iyer and S. Neshatpour

Kaons@J-PARC 2024 workshop - KEK Tokai, July 27 - 29, 2024

Introduction

Standard Model: A success story!



Flavour is at the heart of the Standard Model!

Introduction

Standard Model : A success story!

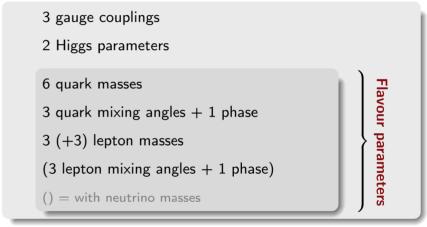
Still, a **deep understanding** of the inner structure of the SM **remains to be achieved**:

- hierarchy of the masses

- peculiar pattern of the CKM matrix elements

- Why 3 generations of quarks and leptons
- What fixes the size of CP violation

- ...



Flavour is at the heart of the Standard Model!

Introduction

Standard Model : A success story!

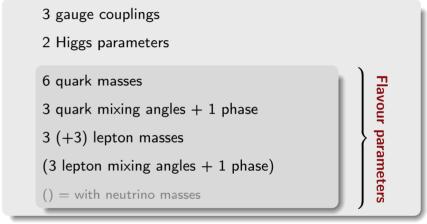
Still, a **deep understanding** of the inner structure of the SM **remains to be achieved**:

- hierarchy of the masses

- peculiar pattern of the CKM matrix elements

- Why 3 generations of quarks and leptons
- What fixes the size of CP violation

- ...



Flavour is at the heart of the Standard Model!

Need for a more complete and predictive theory!

Flavour physics provides a **unique pathway** to understanding the fundamental organizing principle of the SM

Kaon Physics

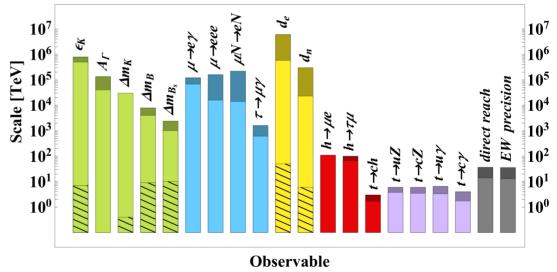
Kaon decays are highly effective in probing new physics

Even more suppressed than B-decays

- → **CKM** and **GIM** suppression of the SM contributions
- → kaon observables generally exhibit greater sensitivity to new physics than B-meson decays

$$\mathscr{L}_{\text{eff}} = \mathscr{L}_{\text{SM}} + \frac{C_5}{\Lambda_M} \mathscr{O}^{(5)} + \sum_a \frac{C_6^a}{\Lambda^2} \mathscr{O}_a^{(6)} + \cdots$$

Assuming new physics in $\mathcal{O}_a^{(6)}$ and $C_6^a \sim \mathcal{O}(1)$



From: Physics Briefing Book: Input for the European Strategy for Particle Physics Update 2020

Kaon Physics

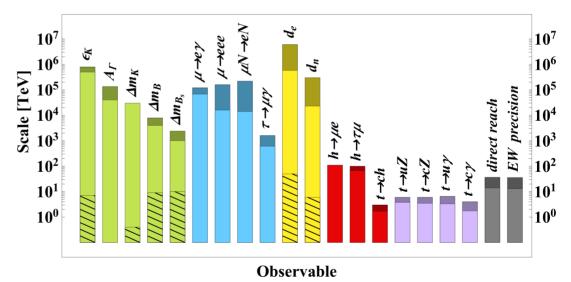
Kaon decays are highly effective in probing new physics

Even more suppressed than B-decays

- → **CKM** and **GIM** suppression of the SM contributions
- → kaon observables generally exhibit greater sensitivity to new physics than B-meson decays

$$\mathscr{L}_{\text{eff}} = \mathscr{L}_{\text{SM}} + \frac{C_5}{\Lambda_M} \mathscr{O}^{(5)} + \sum_a \frac{C_6^a}{\Lambda^2} \mathscr{O}_a^{(6)} + \cdots$$

Assuming new physics in $\mathcal{O}_a^{(6)}$ and $C_a^a \sim \mathcal{O}(1)$



From : Physics Briefing Book : Input for the European Strategy for Particle Physics Update 2020

The first indications of new physics could emerge through flavour measurements!

Rare kaon decays

- The rare decays of a charged or neutral kaon into a pion plus a pair of charged or neutral leptons are strongly suppressed in the SM
 - → historical tools to study Flavor Changing Neutral Currents (FCNC)
- The "gold-plated" rare kaon decays $K^+ \to \pi^+ \nu \nu$ and $K_L \to \pi^0 \nu \nu$ do not suffer from large hadronic uncertainties
 - → rates very precisely predicted in SM
 - → complementary to B physics
- Mostly experimentally clean due to the limited number of possible decay channels
 - → complementary probes of New Physics

Rare kaon decays

Weak effective Hamiltonian:

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{ts}^* V_{td} \frac{\alpha_e}{4\pi} \sum_k C_k^{\ell} O_k^{\ell}$$

Semi-leptonic local operators:

$$O_L^{\ell} = (\bar{s}\gamma_{\mu}P_L d) (\bar{\nu}_{\ell} \gamma^{\mu} (1 - \gamma_5) \nu_{\ell}),$$

$$O_9^{\ell} = (\bar{s}\gamma_{\mu}P_Ld)(\bar{\ell}\gamma^{\mu}\ell), \qquad O_{10}^{\ell} = (\bar{s}\gamma_{\mu}P_Ld)(\bar{\ell}\gamma^{\mu}\gamma_5\ell),$$

Scalar and pseudoscalar operators:

$$O_S = (\bar{s}P_R d)(\bar{\ell}\ell) \,,$$

$$O_P = (\bar{s}P_R d)(\bar{\ell}\gamma_5 \ell) \,,$$

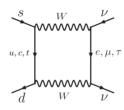
+ the chirality-flipped counterparts

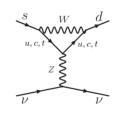
NP contributions: $C_k \to C_k^{\rm SM} + \delta C_k$

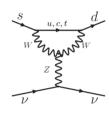
Rare kaon decays

- SD dominated
 - $K^+ \to \pi^+ \nu \nu$ and $K_L \to \pi^0 \nu \nu$ (golden channels)

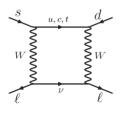
Excellent theoretical precision!

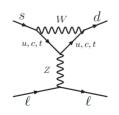


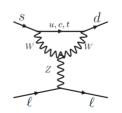


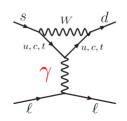


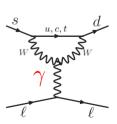
- LD dominated
 - $K_L \rightarrow \mu \mu$, $K_S \rightarrow \mu \mu$, $K^+ \rightarrow \pi^+ \ell \ell$ and $K_L \rightarrow \pi^0 \ell \ell$, ...











$K^+ \rightarrow \Pi^+ VV$

$$BR(K^{+} \to \pi^{+} \nu \bar{\nu}) = \frac{\kappa_{+} (1 + \Delta_{EM})}{\lambda^{10}} \frac{1}{3} s_{W}^{4} \sum_{\ell} \left[Im^{2} \left(\lambda_{t} C_{L}^{\ell} \right) + Re^{2} \left(-\frac{\lambda_{c} X_{c}}{s_{w}^{2}} + \lambda_{t} C_{L}^{\ell} \right) \right]$$

 $\lambda_i = \bigvee_{i=1}^k \bigvee_{j \in I}$

- Sum over the 3 neutrino flavours
- Electromagnetic radiative correction: $\Delta_{EM} \approx -0.003$

[Mescia, Smith '07]

- In the SM (top loop): $C_{L \, {
 m SM}}^\ell = -X_{
 m SM}(x_t)/s_W^2$ NNLO QCD and 2-loop EW [Buchalla, Buras,'99; Misiak, Urban '99, Broad et al. '10]
- SD:[Buras et al. '05; Brod et al. '08] charm contribution: $X_c = \lambda^4 [P_c^{\mathrm{SD}} + \delta P_{c,u}^{\mathrm{LD}}]$ SD: NNLO QCD and NLO EW; LD: ChPT LD:[Isidori et al.'05]
- O_L matrix elements known from $K_{3\ell}$ branching ratios \rightarrow included in κ_+

[Mescia. Smith '07]

 $\Gamma_{\rm SD}/\Gamma$ >90%

$$BR(K^{+} \to \pi^{+} \nu \bar{\nu}) = \frac{\kappa_{+} (1 + \Delta_{EM})}{\lambda^{10}} \frac{1}{3} s_{W}^{4} \sum_{\ell} \left[Im^{2} \left(\lambda_{t} C_{L}^{\ell} \right) + Re^{2} \left(-\frac{\lambda_{c} X_{c}}{s_{w}^{2}} + \lambda_{t} C_{L}^{\ell} \right) \right]$$

 $\lambda_i = V_{is}^* V_{id}$

SM prediction:

$$BR(K^+ \to \pi^+ \nu \bar{\nu})_{SM} = (7.86 \pm 0.61) \times 10^{-11}$$

[D'Ambrosio, Iyer, FM, Neshatpour '22]

Sources of uncertainty:

$$BR(K^+ \to \pi^+ \nu \bar{\nu})_{SM} = (7.73 \pm 0.61) \times 10^{-11}$$

[Brod, Gorbahn, Stamou '21]

$$BR(K^+ \to \pi^+ \nu \bar{\nu})_{SM} = (8.60 \pm 0.42) \times 10^{-11}$$

[Buras, Venturini '22]

$$BR(K^{+} \to \pi^{+} \nu \bar{\nu}) = \frac{\kappa_{+} (1 + \Delta_{EM})}{\lambda^{10}} \frac{1}{3} s_{W}^{4} \sum_{\ell} \left[Im^{2} \left(\lambda_{t} C_{L}^{\ell} \right) + Re^{2} \left(-\frac{\lambda_{c} X_{c}}{s_{w}^{2}} + \lambda_{t} C_{L}^{\ell} \right) \right]$$

$$BR(K^+ \to \pi^+ \nu \bar{\nu})_{NA62} = (10.6^{+4.0}_{-3.5} \pm 0.9) \times 10^{-11}$$

[NA62 Coll., Cortina Gil et al. '21]

$$BR(K^+ \to \pi^+ \nu \bar{\nu})_{SM} = (7.86 \pm 0.61) \times 10^{-11}$$

[D'Ambrosio, Iyer, FM, Neshatpour '22]

$$BR(K^{+} \to \pi^{+} \nu \bar{\nu}) = \frac{\kappa_{+} (1 + \Delta_{EM})}{\lambda^{10}} \frac{1}{3} s_{W}^{4} \sum_{\ell} \left[Im^{2} \left(\lambda_{t} C_{L}^{\ell} \right) + Re^{2} \left(-\frac{\lambda_{c} X_{c}}{s_{w}^{2}} + \lambda_{t} C_{L}^{\ell} \right) \right]$$

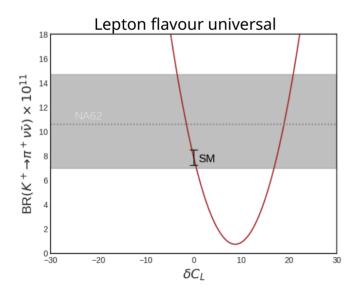
$$BR(K^+ \to \pi^+ \nu \bar{\nu})_{NA62} = (10.6^{+4.0}_{-3.5} \pm 0.9) \times 10^{-11}$$

$$BR(K^+ \to \pi^+ \nu \bar{\nu})_{SM} = (7.86 \pm 0.61) \times 10^{-11}$$

[D'Ambrosio, Iyer, FM, Neshatpour '22]

[NA62 Coll., Cortina Gil et al. '21]

New Physics effects:



$$BR(K^{+} \to \pi^{+} \nu \bar{\nu}) = \frac{\kappa_{+} (1 + \Delta_{EM})}{\lambda^{10}} \frac{1}{3} s_{W}^{4} \sum_{\ell} \left[Im^{2} \left(\lambda_{t} C_{L}^{\ell} \right) + Re^{2} \left(-\frac{\lambda_{c} X_{c}}{s_{w}^{2}} + \lambda_{t} C_{L}^{\ell} \right) \right]$$

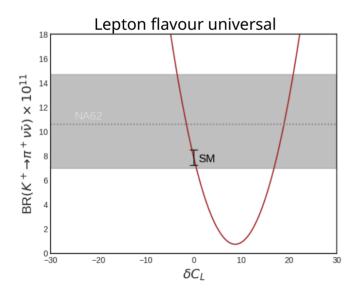
$$BR(K^+ \to \pi^+ \nu \bar{\nu})_{NA62} = (10.6^{+4.0}_{-3.5} \pm 0.9) \times 10^{-11}$$

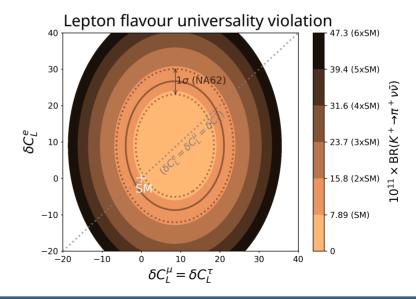
$$BR(K^+ \to \pi^+ \nu \bar{\nu})_{SM} = (7.86 \pm 0.61) \times 10^{-11}$$

[NA62 Coll., Cortina Gil et al. '21]

[D'Ambrosio, Iyer, FM, Neshatpour '22]

New Physics effects:





Theoretically very clean!

Sensitive to the CP-violating phase of the CKM matrix

Branching ratio:
$$\mathrm{BR}(K_L \to \pi^0 \nu \bar{\nu}) = \frac{\kappa_L}{\lambda^{10}} \frac{1}{3} s_w^4 \sum_{\ell} \mathrm{Im}^2 \left(\lambda_t C_L^{\ell} \right)$$

- Sum over the 3 neutrino flavours
- κ encodes the hadronic matrix element
- C_{L,SM} same as for K⁺→π⁺νν
- charm contributions below 1%
- 99% SD

$$BR(K_L \to \pi^0 \nu \bar{\nu}) = \frac{\kappa_L}{\lambda^{10}} \frac{1}{3} s_w^4 \sum_{\ell} Im^2 \left(\lambda_t C_L^{\ell} \right)$$

SM prediction:

$$BR(K_L \to \pi^0 \nu \bar{\nu})_{SM} = (2.68 \pm 0.30) \times 10^{-11}$$

[D'Ambrosio, Iyer, FM, Neshatpour '22]

Sources of uncertainty:

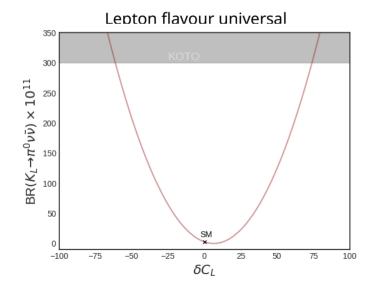
BR
$$(K_L \to \pi^0 \nu \bar{\nu})_{SM} = (2.59 \pm 0.29) \times 10^{-11}$$

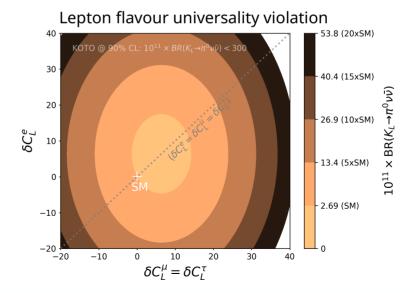
BR $(K_L \to \pi^0 \nu \bar{\nu})_{SM} = (2.94 \pm 0.15) \times 10^{-11}$

[Brod, Gorbahn, Stamou '21]

[Buras, Venturini '22]

New Physics effects:





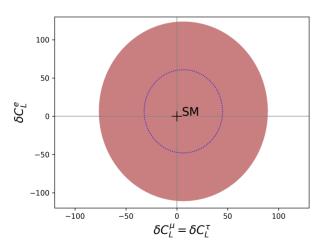
K_L→ π⁰ νν - Grossman–Nir bound

The matrix elements for $K_L \to \pi^0 \, \nu \nu$ and $K^+ \to \pi^+ \, \nu \nu$ transitions are related through isospin resulting in the Grossman–Nir bound :

$$BR(K_L \rightarrow \pi^0 \nu\nu) \leq 4.3 \times BR(K^+ \rightarrow \pi^+ \nu\nu)$$

Valid in the presence of most NP models

Considering the NA62 measurement of the charged mode:



S. Neshatpour, Symmetry 2024, 16(8), 946

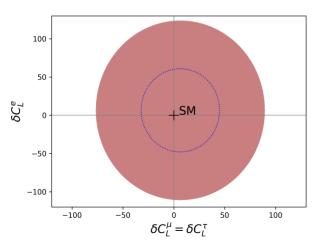
K_L→ π⁰ νν - Grossman–Nir bound

The matrix elements for $K_L \to \pi^0 \, \nu \nu$ and $K^+ \to \pi^+ \, \nu \nu$ transitions are related through isospin resulting in the Grossman–Nir bound :

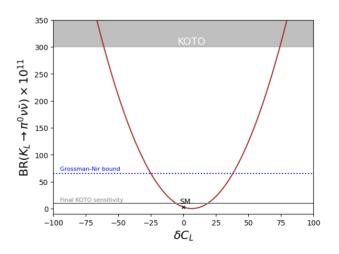
$$BR(K_L \rightarrow \pi^0 \nu\nu) \leq 4.3 \times BR(K^+ \rightarrow \pi^+ \nu\nu)$$

Valid in the presence of most NP models

Considering the NA62 measurement of the charged mode:



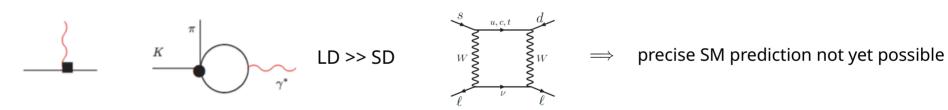
S. Neshatpour, Symmetry 2024, 16(8), 946



$K^+ \rightarrow \pi^+ \ell \ell'$

Analogous mode to B \rightarrow K $\ell\ell$ CP- conserving, different from $K_L \rightarrow \pi^0 \ell\ell$ Can also be sensitive to scalar contribution

Long-distance dominated, mediated by single photon exchange $K^+ \rightarrow \pi^+ \gamma^*$



The one–photon exchange has been studied at O(p⁶) in the chiral expansion

Gilman, Wise, '80; Ecker et al. '87; D'Ambrosio et al '98

- → includes an unknown combination of chiral couplings
- \rightarrow described as a linear expansion: $(a_+ + b_+ z)$

$$z=m^2(\ell\ell)/M_K$$

LFUV in $K^+ \rightarrow \pi^+ \ell \ell$

$${\cal A}(z) \propto G_F M_K^2 (a+bz) + W^{\pi\pi}(z)$$
 $z=m^2 (\ell\ell)/M_K^2$ form factor parameters loop term

 a_{+} and b_{+} are not theoretically determined precise enough to probe short distance physics

LFU predicts the same form factors α and b, for $\ell = e, \mu$

$$a^{\rm ee}$$
 \neq $a^{\mu\mu}$ indicates LFUV NP: $a_+^{\mu\mu} - a_+^{ee} = -\sqrt{2}\,{
m Re}\,[V_{td}V_{ts}^*(C_9^\mu - C_9^e)]$ [Crivellin, D'Ambrosio, Hoferichter, Tunstall '16]

Channel	a_{+}	b_+	Reference
ee	-0.561 ± 0.009	-0.694 ± 0.040	E865 '99 and NA48/2 '09 comb. [D'Ambrosio, Greynat, Knecht '18
$\mu\mu$	-0.575 ± 0.013	-0.722 ± 0.043	NA62 Coll. '22

Lattice: determination at the 10% uncertainty can be expected

LFUV in $K^+ \rightarrow \pi^+ \ell \ell$

$${\cal A}(z) \propto G_F M_K^2 (a+bz) + W^{\pi\pi}(z)$$
 $z=m^2 (\ell\ell)/M_K^2$ form factor parameters loop term

 a_{+} and b_{+} are not theoretically determined precise enough to probe short distance physics

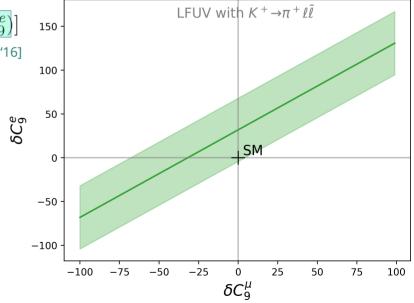
LFU predicts the same form factors α and β , for $\ell = e, \mu$

$$a^{ee} \neq \alpha^{\mu\mu}$$
 indicates LFUV NP:

$$a^{\rm ee}$$
 \neq $a^{\rm \mu\mu}$ indicates LFUV NP: $a_+^{\mu\mu} - a_+^{ee} = -\sqrt{2}\,{
m Re}\,[V_{td}V_{ts}^*(C_9^\mu - C_9^e)]$ [Crivellin, D'Ambrosio, Hoferichter, Tunstall '16]

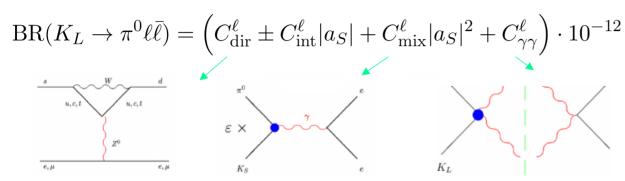
Channel	a_+	b_{+}	Reference
ee	-0.561 ± 0.009	-0.694 ± 0.040	E865 '99 and NA48/2 '09 comb. [D'Ambrosio, Greynat, Knecht '18]
$\mu\mu$	-0.575 ± 0.013	-0.722 ± 0.043	NA62 Coll. '22

Lattice: determination at the 10% uncertainty can be expected



$K_L \rightarrow \pi^0 \ell \ell$

Smoking gun for the detection of direct CP violation!



[Dambrosio et al. '98; Isidori et al. '04; Mescia, Smith, Trine '06]

- C_{dir} : direct CP-violating term: purely short-distance effect contributing via the vector and axial Wilson coefficients C_9 and C_{10} It is proportional to the imaginary part of λ_t
- C_{mix} : indirect CP-violating term: long-distance dominated contribution of the single photon exchange via the $K_S \to \pi^0 \, \gamma^*$ It is proportional to ϵ
- C_{int}: interference term of the above two contributions
- C_{yy} : CP-conserving term: long-distance-dominated contribution via two virtual photon exchanges.

$K_L \rightarrow \pi^0 \ell \ell$

[Mescia, Smith, Trine '06]

$$w_{7V} = \frac{1}{2\pi} \text{Im} \left[\frac{\lambda_t^{sd}}{1.407 \times 10^{-4}} C_9 \right], \quad w_{7A} = \frac{1}{2\pi} \text{Im} \left[\frac{\lambda_t^{sd}}{1.407 \times 10^{-4}} C_{10} \right]$$

SM prediction:

BRSM
$$(K_L \to \pi^0 e\bar{e}) = 3.46^{+0.92}_{-0.80} (1.55^{+0.60}_{-0.48}) \times 10^{-11}$$

BRSM $(K_L \to \pi^0 \mu \bar{\mu}) = 1.38^{+0.27}_{-0.25} (0.94^{+0.21}_{-0.20}) \times 10^{-11}$

[D'Ambrosio, Iyer, FM, Neshatpour '22]

Experimental results:

BR^{exp}
$$(K_L \to \pi^0 e\bar{e}) < 28 \times 10^{-11}$$
 at 90% CL
BR^{exp} $(K_L \to \pi^0 \mu \bar{\mu}) < 38 \times 10^{-11}$ at 90% CL

[KTeV '00 and '03]

$K_L \rightarrow \pi^0 \ell \ell$

[Mescia, Smith, Trine '06]

$$w_{7V} = \frac{1}{2\pi} \text{Im} \left[\frac{\lambda_t^{sd}}{1.407 \times 10^{-4}} C_9 \right], \quad w_{7A} = \frac{1}{2\pi} \text{Im} \left[\frac{\lambda_t^{sd}}{1.407 \times 10^{-4}} C_{10} \right]$$

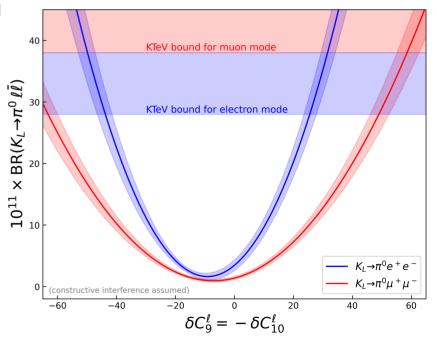
SM prediction:

$$\begin{split} \mathrm{BR^{SM}}(K_L \to \pi^0 e \bar{e}) &= 3.46^{+0.92}_{-0.80} \left(1.55^{+0.60}_{-0.48}\right) \times 10^{-11} \\ \mathrm{BR^{SM}}(K_L \to \pi^0 \mu \bar{\mu}) &= 1.38^{+0.27}_{-0.25} \left(0.94^{+0.21}_{-0.20}\right) \times 10^{-11} \\ \mathrm{[D'Ambrosio, Iyer, FM, Neshatpour '22]} \end{split}$$

Expreimental results:

$${\rm BR}^{\rm exp}(K_L \to \pi^0 e\bar{e}) < 28 \times 10^{-11}$$
 at 90% CL
 ${\rm BR}^{\rm exp}(K_L \to \pi^0 \mu \bar{\mu}) < 38 \times 10^{-11}$ at 90% CL

[KTeV '00 and '03]



The electron channel is more sensitive to NP contributions than the muon channel!

$K_S \rightarrow \pi^0 \ell \ell$

The branching ratio of the neutral mode $K_s \to \pi^0 \ell \ell$ is about two orders of magnitude smaller than that of the charged mode

→ even more challenging to extract information on short-distance physics

The experimental determination of a_s is crucial for the SM prediction of the branching ratio of $K_L \to \pi^0 \ell \ell$ which is sensitive to NP contributions.

The branching ratio has been measured by NA48/1 experiment:

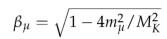
$$|a_S^{ee}| = 1.06^{+0.25}_{-0.21}$$
 and $|a_S^{\mu\mu}| = 1.54^{+0.40}_{-0.32}$

The LHCb upgrade will be able to reduce the uncertainty in the determination of as

$K_L \rightarrow \mu \mu$

 $K_L \rightarrow \mu\mu$ is long distance dominated, mediated by two photons via $K_L \rightarrow \gamma^* \gamma^*$

$$BR(K_L \to \mu \bar{\mu}) = \tau_L \frac{f_K^2 m_K^3 \beta_{\mu}}{16\pi} \left| N_L^{LD} - \left(\frac{2m_{\mu}}{m_K} \frac{G_F \alpha_e}{\sqrt{2}\pi} \right) Re \left[-\lambda_c \frac{Y_c}{s_W^2} + \lambda_t C_{10}^{\ell} \right] \right|^2$$



Short distance: Y_c (charm contribution) and $C_{10}^{SM} = -Y(x_t)/s_W^2$ (top contribution)

Long distance: 2-photon exchange:

- absorptive part: calculable with good precision, almost saturates the experimental measurement
- dispersive part: smaller, but introduces a large theoretical uncertainty

$$N_L^{\rm LD} \propto (\chi_{\rm disp} + i\chi_{\rm abs}) \longrightarrow N_L^{\rm LD} = \pm [0.54(77) - 3.95i] \times 10^{-11} \,({\rm GeV})^{-2}$$

[D'Ambrosio et al. '86 '97; Gomez Dumm, Pich '98; Knecht et al. '99; Isidori, Unterdorfer '03] [D'Ambrosio et al. '17] [Hoferichter et al. '23]

Prediction depends on the sign of A($K_L \rightarrow \gamma \gamma$) contribution determining the effect of the SD-LD interference

See talk by Martin Hoferichter on Sunday

$K_L \rightarrow \mu\mu$

 $K_L \rightarrow \mu\mu$ is long distance dominated, mediated by two photons via $K_L \rightarrow \gamma^* \gamma^*$

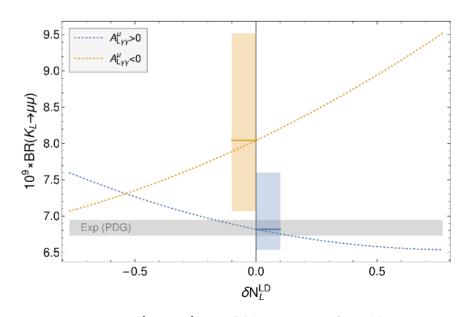
$$BR(K_L \to \mu \bar{\mu}) = \tau_L \frac{f_K^2 m_K^3 \beta_\mu}{16\pi} \left| N_L^{LD} - \left(\frac{2m_\mu}{m_K} \frac{G_F \alpha_e}{\sqrt{2}\pi} \right) Re \left[-\lambda_c \frac{Y_c}{s_W^2} + \lambda_t C_{10}^{\ell} \right] \right|^2$$

SM prediction:

$$\mathrm{BR}(K_L \to \mu \bar{\mu})_{\mathrm{SM}} \ = \begin{cases} \mathrm{LD}(+) \colon \left(6.82^{+0.77}_{-0.24} \pm 0.04\right) \times 10^{-9} \\ \mathrm{LD}(-) \colon \left(8.04^{+1.46}_{-0.97} \pm 0.09\right) \times 10^{-9} \end{cases}$$
 [D'Ambrosio, Iyer, FM, Neshatpour '22]

Experimental results:

$${\rm BR}(K_L \to \mu \bar{\mu})_{\rm exp} = (6.84 \pm 0.11) \times 10^{-9}$$
 [PDG]



Precise experimental measurement (less than 2% uncertainty)! Large and asymmetric theoretical uncertainties!

$K_L \rightarrow \mu \mu$

$K_L \rightarrow \mu \mu$ is long distance dominated, mediated by two photons via $K_L \rightarrow \gamma^* \gamma^*$

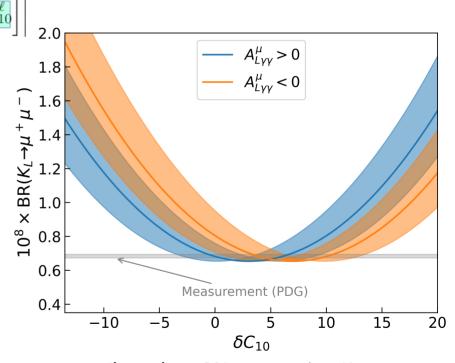
$$BR(K_L \to \mu \bar{\mu}) = \tau_L \frac{f_K^2 m_K^3 \beta_\mu}{16\pi} \left| N_L^{LD} - \left(\frac{2m_\mu}{m_K} \frac{G_F \alpha_e}{\sqrt{2}\pi} \right) Re \left[-\lambda_c \frac{Y_c}{s_W^2} + \lambda_t C_{10}^{\ell} \right] \right|^2$$

SM prediction:

$$\mathrm{BR}(K_L \to \mu \bar{\mu})_{\mathrm{SM}} = \begin{cases} \mathrm{LD}(+) \colon \left(6.82^{+0.77}_{-0.24} \pm 0.04\right) \times 10^{-9} \\ \mathrm{LD}(-) \colon \left(8.04^{+1.46}_{-0.97} \pm 0.09\right) \times 10^{-9} \end{cases}$$
 [D'Ambrosio, Iyer, FM, Neshatpour '22]

Experimental results:

$${\rm BR}(K_L \to \mu \bar{\mu})_{\rm exp} = (6.84 \pm 0.11) \times 10^{-9}$$
 [PDG]



Precise experimental measurement (less than 2% uncertainty)! Large and asymmetric theoretical uncertainties!

$K_S \rightarrow \mu \mu$

LD contribution for $K_s \to \mu\mu$ is cleaner: The leading $O(p^4)$ chiral contribution of $K_s \to \pi^+ \pi^- \to \gamma\gamma \to \mu^+ \mu^-$ is theoretically under better control

$$BR(K_S \to \mu \bar{\mu}) = \tau_S \frac{f_K^2 m_K^3 \beta_{\mu}}{16\pi} \left\{ \beta_{\mu}^2 \left| N_S^{\text{LD}} \right|^2 + \left(\frac{2m_{\mu}}{m_K} \frac{G_F \alpha_e}{\sqrt{2}\pi} \right)^2 Im^2 \left[-\lambda_c \frac{Y_c}{s_W^2} + \lambda_t C_{10}^{\ell} \right] \right\}$$

$$\beta_{\mu} = \sqrt{1 - 4m_{\mu}^2 / M_K^2}$$

$$N_S^{\rm LD} = (-2.65 + 1.14i) \times 10^{-11} \,(\text{GeV})^{-2}$$

[D'Ambrosio et al. '86 '97; Gomez Dumm, Pich '98; Knecht et al. '99; Isidori. Unterdorfer '031

The theoretical prediction is not affected by sign ambiguity

$K_S \rightarrow \mu\mu$

$$BR(K_S \to \mu \bar{\mu}) = \tau_S \frac{f_K^2 m_K^3 \beta_{\mu}}{16\pi} \left\{ \beta_{\mu}^2 \left| N_S^{LD} \right|^2 + \left(\frac{2m_{\mu}}{m_K} \frac{G_F \alpha_e}{\sqrt{2}\pi} \right)^2 Im^2 \left[-\lambda_c \frac{Y_c}{s_W^2} + \lambda_t C_{10}^{\ell} \right] \right\}$$

SM prediction:

$${
m BR}(K_S o \mu ar{\mu})^{
m SM} = (5.15 \pm 1.50) imes 10^{-12}$$
 [D'Ambrosio, Iyer, FM, Neshatpour '22]

Experimental results:

$${\rm BR}(K_S \to \mu \mu) < 2.1(2.4) \times 10^{-10} @90(95)\% {\rm CL}$$

$K_S \rightarrow \mu \mu$

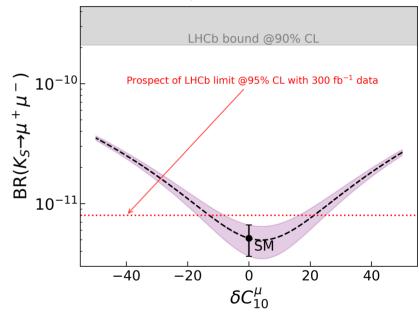
$$BR(K_S \to \mu \bar{\mu}) = \tau_S \frac{f_K^2 m_K^3 \beta_{\mu}}{16\pi} \left\{ \beta_{\mu}^2 \left| N_S^{LD} \right|^2 + \left(\frac{2m_{\mu}}{m_K} \frac{G_F \alpha_e}{\sqrt{2}\pi} \right)^2 Im^2 \left[-\lambda_c \frac{Y_c}{s_W^2} + \lambda_t \overline{C_{10}^{\ell}} \right] \right\}$$

SM prediction:

$${
m BR}(K_S o \mu \bar{\mu})^{
m SM} = (5.15 \pm 1.50) imes 10^{-12}$$
 [D'Ambrosio, Iyer, FM, Neshatpour '22]

Experimental results:

$${\rm BR}(K_S \to \mu \mu) < 2.1(2.4) \times 10^{-10} @90(95)\% {\rm CL}$$



- \rightarrow Future measurements of BR(K_S \rightarrow $\mu\mu$) at LHCb will be crucial for exploring new physics scenarios involving scalar and pseudoscalar contributions!
- \rightarrow Interference effects between $K_L \rightarrow \mu\mu$ and $K_S \rightarrow \mu\mu$ could provide valuable insights into short-distance physics

D'Ambrosio, Kitahara '17; Dery et al. '21

$K_S \rightarrow \mu\mu$ – scalar contribution

Add the scalar operator:

$$H_{eff}^{scalar} = C_s \mathcal{O} + \tilde{C}_s \tilde{\mathcal{O}}$$

$$BR(K_S \to \mu \bar{\mu}) = \tau_S \frac{f_K^2 m_K^3 \beta_{\mu}}{16\pi} \left\{ \beta_{\mu}^2 \left| B_S^{\text{LD}} \right|^2 + \left(\frac{2m_{\mu}}{m_K} \frac{G_F \alpha_e}{\sqrt{2}\pi} \right)^2 Im^2 \left[-\lambda_c \frac{Y_c}{s_W^2} + \lambda_t C_{10}^{\ell} \right] \right\}$$

$$B_S = N_S^{\text{LD}} - \frac{m_s M_K}{m_s + m_d} Re(C_S - \tilde{C}_S)$$

[Chobanova et al '17]

How to get a handle on the scalar operator?

$K^+ \rightarrow \pi^+ \ell \ell$

Let's go back to $K^+ \rightarrow \pi^+ \ell \ell$

$$\frac{d^{2}\Gamma}{dz \, d\cos\theta} = \frac{G_{F}^{2} M_{K}^{5}}{2^{8} \pi^{3}} \beta_{\ell} \, \lambda^{1/2}(z) \times \left\{ |f_{V}|^{2} \frac{\alpha^{2}}{16\pi^{2}} \lambda(z) (1 - \beta_{\ell}^{2} \cos^{2}\theta) + |f_{S}|^{2} z \beta_{\ell}^{2} + \operatorname{Re}(f_{V}^{*} f_{S}) \frac{\alpha \, r_{\ell}}{\pi} \beta_{\ell} \lambda^{1/2}(z) \cos\theta \right\}, \qquad r_{\ell} = m_{\ell} / M_{K}$$

$$A_{\rm FB}(z) = \frac{\alpha G_F^2 M_K^5}{2^8 \pi^4} r_\ell \,\beta_\ell^2(z) \lambda(z) \operatorname{Re}\left(f_V^* f_S\right) / \left(\frac{d\Gamma(z)}{dz}\right)$$

Difficult to do this for the electron mode

AFB is non-zero only in case there are simultaneously vector and scalar contributions!

Bounds on fs

$(K^+ \to \pi^+ \mu^+ \mu^-)$					
NA48/2	exp	$ f_S <$			
A_{FB}	$(-2.4 \pm 1.8) \times 10^{-2}$	4.2×10^{-5}			
BR	$(9.62 \pm 0.21) \times 10^{-8}$	1.0×10^{-4}			
NA62	exp	$ f_S <$			
A_{FB}	$(0.0 \pm 0.7) \times 10^{-2}$	7.7×10^{-6}			
BR	$(9.16 \pm 0.06) \times 10^{-8}$	5.6×10^{-5}			

$(K^+ \to \pi^+ e^+ e^-)$					
E865	exp	$ f_S $			
$A_{ m FB}$	-	_			
BR	$(2.988 \pm 0.040) \times 10^{-7}$	6.8×10^{-5}			
NA48/2	exp	$ f_S <$			
A_{FB}	_	_			
BR	$(3.14 \pm 0.04) \times 10^{-7}$	6.8×10^{-5}			

[D'Ambrosio, Iyer, FM, Neshatpour '24

- we constrain the scalar interactions by examining both the BR and the AFB
- The upper bounds on f₅ from both observables demonstrate the sensitivity of current experimental measurements
- The most stringent limit on f_s arises from the NA62 measurement of AFB, highlighting its potential to probe new physics scenarios involving scalar interactions
- NA62 will have further results for $K^+ \to \pi^+ \ell \ell$ (for muons and electrons)

Global analysis

All observables

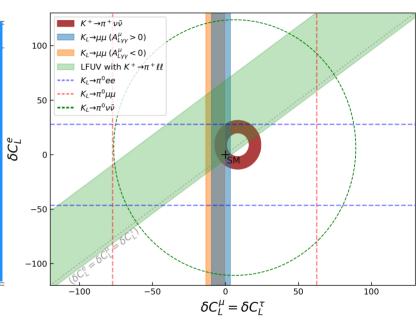
Rare kaon observables

Observable	SM prediction	Experimental results
$\mathrm{BR}(K^+ \to \pi^+ \nu \bar{\nu})$	$(7.86 \pm 0.61) \times 10^{-11}$	$(10.6^{+4.0}_{-3.5} \pm 0.9) \times 10^{-11}$
${ m BR}(K_L^0 o \pi^0 u u)$	$(2.68 \pm 0.30) \times 10^{-11}$	$< 3.0 \times 10^{-9}$ @90% CL
$LFUV(a_+^{\mu\mu} - a_+^{ee})$	0	-0.014 ± 0.016
$BR(K_L \to \mu\mu) \ (+)$	$(6.82^{+0.77}_{-0.29}) \times 10^{-9}$	$(6.84 \pm 0.11) \times 10^{-9}$
$BR(K_L \to \mu\mu) \ (-)$	$(8.04^{+1.47}_{-0.98}) \times 10^{-9}$	(0.04 ± 0.11) × 10
$BR(K_S \to \mu\mu)$	$(5.15 \pm 1.50) \times 10^{-12}$	$< 2.1(2.4) \times 10^{-10} @90(95)\% CL$
$BR(K_L \to \pi^0 ee)(+)$	$(3.46^{+0.92}_{-0.80}) \times 10^{-11}$	$< 28 \times 10^{-11}$ @90% CL
$BR(K_L \to \pi^0 ee)(-)$	$(1.55^{+0.60}_{-0.48}) \times 10^{-11}$	(2 0 % 10
$BR(K_L \to \pi^0 \mu \mu)(+)$	$(1.38^{+0.27}_{-0.25}) \times 10^{-11}$	$< 38 \times 10^{-11}$ @90% CL
$BR(K_L \to \pi^0 \mu \mu)(-)$	$(0.94^{+0.21}_{-0.20}) \times 10^{-11}$	1 00 / 10 00/0 OB

We assume NP contributions of the charged and neutral leptons related to each other by the SU(2)_L gauge symmetry and we work in the chiral basis

$$\delta C_L^{\ell} \equiv \delta C_9^{\ell} = -\delta C_{10}^{\ell}$$

$$\delta C_L^e \neq \delta C_L^\mu = \delta C_L^\tau$$



Bounds from individual observables:

Coloured regions: 68% CL measurements

Dashed lines: 90% upper limits

All observables

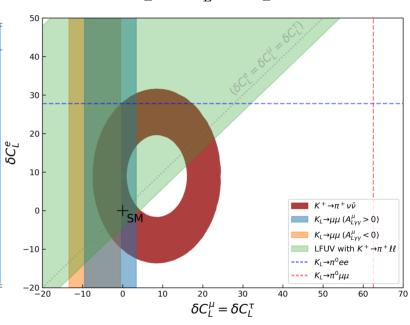
Rare kaon observables

Observable	SM prediction	Experimental results
$\mathrm{BR}(K^+ \to \pi^+ \nu \bar{\nu})$	$(7.86 \pm 0.61) \times 10^{-11}$	$(10.6^{+4.0}_{-3.5} \pm 0.9) \times 10^{-11}$
${\rm BR}(K_L^0\to\pi^0\nu\nu)$	$(2.68 \pm 0.30) \times 10^{-11}$	$< 3.0 \times 10^{-9}$ @90% CL
$LFUV(a_+^{\mu\mu} - a_+^{ee})$	0	-0.014 ± 0.016
$BR(K_L \to \mu\mu) \ (+)$	$(6.82^{+0.77}_{-0.29}) \times 10^{-9}$	$(6.84 \pm 0.11) \times 10^{-9}$
$BR(K_L \to \mu\mu) \ (-)$	$(8.04^{+1.47}_{-0.98}) \times 10^{-9}$	$(0.04 \pm 0.11) \times 10$
$BR(K_S \to \mu\mu)$	$(5.15 \pm 1.50) \times 10^{-12}$	$< 2.1(2.4) \times 10^{-10}$ @90(95)% CL
$BR(K_L \to \pi^0 ee)(+)$	$(3.46^{+0.92}_{-0.80}) \times 10^{-11}$	$< 28 \times 10^{-11} @90\% CL$
$BR(K_L \to \pi^0 ee)(-)$	$(1.55^{+0.60}_{-0.48}) \times 10^{-11}$	∠0 ∧ 10
$\mathrm{BR}(K_L \to \pi^0 \mu \mu)(+)$	$(1.38^{+0.27}_{-0.25}) \times 10^{-11}$	$< 38 \times 10^{-11} @90\% CL$
$BR(K_L \to \pi^0 \mu \mu)(-)$	$(0.94^{+0.21}_{-0.20}) \times 10^{-11}$	7 00 N 10

We assume NP contributions of the charged and neutral leptons related to each other by the SU(2)_L gauge symmetry and we work in the chiral basis

$$\delta C_L^\ell \equiv \delta C_9^\ell = -\delta C_{10}^\ell$$

$$\delta C_L^e \neq \delta C_L^\mu = \delta C_L^\tau$$



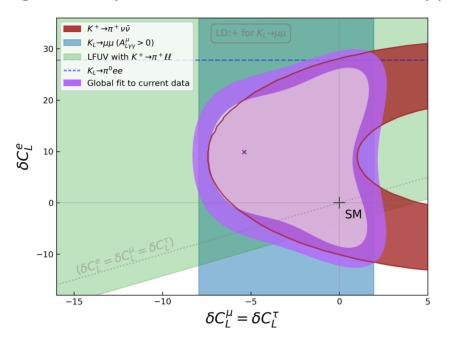
Bounds from individual observables:

Coloured regions: 68% CL measurements

Dashed lines: 90% upper limits

All observables / Global fit

Fit (with SuperIso public program) for positive LD contributions to $K_L \rightarrow \mu\mu$

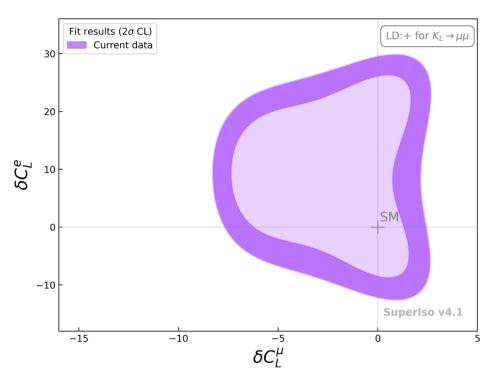


Lighter / darker purple region: 68% / 95% CL of global fit

Main constraining observables BR($K^+ \rightarrow \pi^+ \nu \nu$) followed by BR($K_L \rightarrow \mu \mu$)

Prospects

Prospects for future measurements

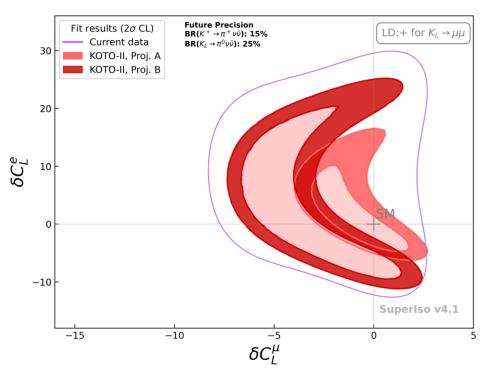


current sutuation

Projection A

Observables already measured are kept, others assumed at their SM values, all with target precision of KOTO-II

Projection B



current sutuation

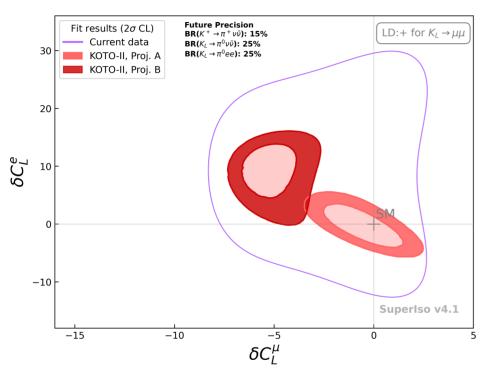
Scenario 1

- o Final NA62 precision for K^+ → π^+ νν
- o Final KOTO-II precision for $K_L \rightarrow \pi^0 \nu \nu$

Projection A

Observables already measured are kept, others assumed at their SM values, all with target precision of KOTO-II

Projection B



current sutuation

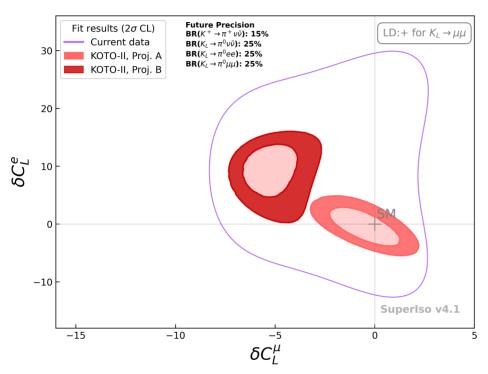
Scenario 2

- o Final NA62 precision for K^+ → π^+ νν
- o Final KOTO-II precision for $K_L \rightarrow \pi^0 \nu \nu$
- o KOTO-II K_1 → π0 ee

Projection A

Observables already measured are kept, others assumed at their SM values, all with target precision of KOTO-II

Projection B



current sutuation

Scenario 3

- o Final NA62 precision for K^+ → π^+ νν
- o Final KOTO-II precision for K_L → π⁰ νν
- O KOTO-II K_1 → π0 ee
- o KOTO-II $K_L \rightarrow \pi^0 \mu\mu$

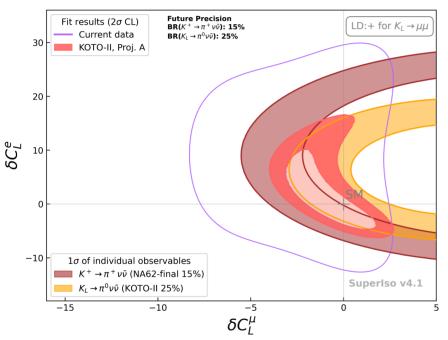
Projection A

Observables already measured are kept, others assumed at their SM values, all with target precision of KOTO-II

Projection B

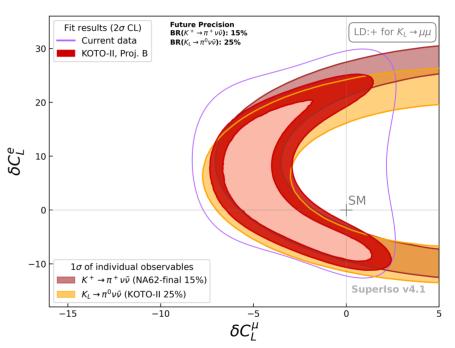
Impact of the main decays

Scenario 1



Projection A

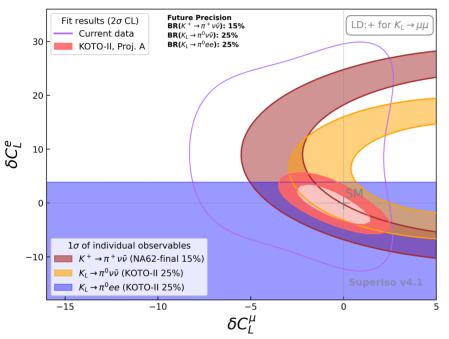
Observables already measured are kept, others assumed at their SM values, all with target precision of KOTO-II



Projection B

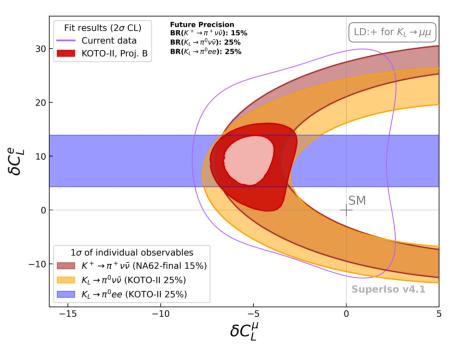
Impact of the main decays

Scenario 2



Projection A

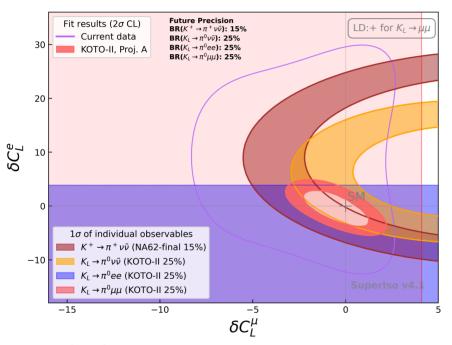
Observables already measured are kept, others assumed at their SM values, all with target precision of KOTO-II



Projection B

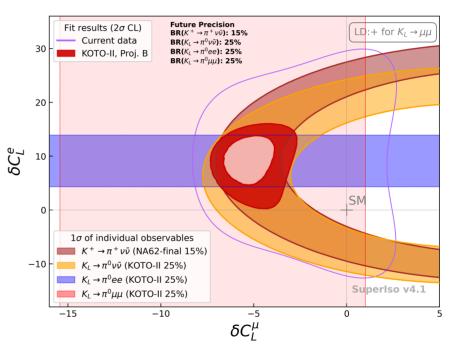
Impact of the main decays

Scenario 3



Projection A

Observables already measured are kept, others assumed at their SM values, all with target precision of KOTO-II



Projection B

Conclusions

- Rare kaon decays offer valuable insights into short-distance physics
 - ⇒ providing indirect portal to new physics
- $K \rightarrow \pi \nu\nu$ decays are predicted in the SM with very high precision
 - \Rightarrow An experimental measurement of $K_{\perp} \rightarrow \pi \nu \nu$ will be of utmost important
 - ⇒ Together with $K_L \to \pi^0$ ee and $K_L \to \pi^0 \mu\mu$ provides a great potential for probing and distinguishing new physics scenarios
 - ⇒ will be further enhanced via advancements in theoretical precision using continuum, data-driven approaches and lattice calculations

Improvement in the theoretical and experimental determination of rare kaon decays offers promising avenue for uncovering signs of new physics

Rosemary Fowler discovered the kaon particle during her doctoral research in 1948

She received an honorary doctorate from Sir Paul Nurse, chancellor of the University of Bristol on 22 July **2024**

... at the age of **98**!

© 2024 Guardian News

