A_{CP} in $K_{S} \rightarrow \mu \mu$

Diego Martinez Santos, Universidade da Coruña

$$A_{CP}$$
 in $K_{S} \rightarrow \mu \mu$

$$\left(\frac{d\Gamma}{dt}\right) = N_f f(t), \quad f(t) = C_L e^{-\Gamma_L t} + C_S e^{-\Gamma_S t} + 2C_{Int.} \cos(\Delta m t - \varphi_0) e^{-\Gamma t}$$

A. Dery, KAONS@JPARC

$$\begin{split} \mathbf{A}_{\rm CP}(t\sim\!\!0) &\sim -2\mathbf{C}_{\rm int} \cos(\varphi_0) \ / \ (\mathbf{C}_{\rm L} + \mathbf{C}_{\rm S}) \\ & (C_L^{K^0})_{\rm SM} = |A_0^{\rm CP-even}|^2 \equiv 1, \\ & (C_S^{K^0})_{\rm SM} = |A_0^{\rm CP-odd}|^2 + \beta_\mu^2 |A_1^{\rm CP-even}|^2 \approx 0.43, \\ & (C_{Int}^{K^0})_{\rm SM} = |A_0^{\rm CP-even}| |A_0^{\rm CP-odd}| \approx 0.12, \end{split}$$

https://arxiv.org/abs/2104.06427

 $\cos^2 \varphi_0 \, = \, 0.96 \pm 0.02_{\rm exp} \pm 0.02_{\rm th} \, .$

https://arxiv.org/pdf/2211.03804

$$|A_{CP}(0)|^{SM} \sim 16\%$$

Sign depends on sign(A $\gamma\gamma$)

 $K \rightarrow \mu \mu 50\%$ Long 50% downstream

But only long are used

Lifetime acceptance and $K_L \rightarrow \mu \mu$

 K_L and K_S are distinguishable only by the decaytime... ... and that is in theory. In practice, LHCb decaytime acceptance is not great for kaons With β 5xΓs (>> Γ_L).

This makes the two lifetime distributions to look similar

But the overall efficiency ratio is of course different

And makes $K_L \square \mu \mu$ contribution to be "only" 3 times larger than the KS $\rightarrow \mu \mu$ signal

4

on selection/trigger/etc...)

Long vs Downstream

5

5

Long vs Downstream

Prospects and what could be done for ACP

 $K_{S} \rightarrow \mu \mu$ latest result

- Full dataset analysed (9 fb⁻¹)
- No evidence for signal (1.4σ)

 $BR(K_{s}\Box \mu\mu) < 2.1 \times 10^{-10} @ 90\% CL$

arXiv: 1808.03477

arXiv: 1808.03477

11

Studying CP asymmetries in LHCb

We could measure CP asymmetries in K0 decays at LHCb at t~0 (LHCb acceptance), if:

- Have a sizeable K⁰ production asymmetry
 - It is **not** the case, \sim few %
 - Still, can try to exploit differences in η , pT \rightarrow eg, valence quarks can be part of <u>a K⁰</u>, but not of a K⁰.
- We tag the K0 meson at production time
 - A promising way seems to be $pp \to K^0 K^- X$

 $pp \to K^0 K^- X, \, pp \to K^{*+} X \to K^0 \pi^+ X \text{ and } pp \to K^0 \Lambda^0 X.$

Studying CP asymmetries in LHCb

Evaluate tagging power for kaon events using Fast Simulation of LHCb upgrade

- Tracking system <u>https://arxiv.org/abs/2012.02692</u> → Quite ok for efficiencies, resolutions
- Added on top PID efficiency, $\pi \rightarrow K$ misid from tabulated numbers

 \rightarrow Got 3% tagging power for SSK : a bit on the optimistic side, but right ballpark \rightarrow Without much tuning on the K+ selection cuts , obtained:

 $\epsilon = 62\%$ D = 75% 60%

 \rightarrow tagging power for K⁰'s of \sim 35% >> SSK for Bs

22%

 $K_{S} \rightarrow \mu\mu$: prospects

Dilution

```
\Rightarrow Effective yield, Y_{eff} \sim T_P S^2/(S+B),
```

Tagging power: $\epsilon_{Tag}D_{\lambda}^{2}$ Tagging efficiency

Fast simulation:

$$T_{\rm P} \sim 22\%$$
 (if one trusts Pythia)

 $K_{S} \rightarrow \mu\mu$: prospects


```
\Rightarrow Effective yield, Y_{eff} \sim T_P S^2/(S+B),
```

Signal and background in a narrow window around the K^{0} peak

$$K_{S} \rightarrow \mu\mu$$
: prospects

 \Rightarrow Effective yield, $Y_{eff} \sim T_P S^2/(S+B)$,

Signal and background in a narrow window around the K^0 peak

$$K_S \rightarrow \mu\mu$$
: prospects

 \Rightarrow Effective yield, $Y_{eff} \sim T_P S^2/(S+B) \sim 15$ events for 300 fb⁻¹ $\rightarrow \sigma_{ACP} \sim 26\%$

How to improve it:

→ Increase T_P (unlikely big effects, already using an optimistic value) → Increase S (R&D on beam side → 350fb⁻¹?)

$$K_S \rightarrow \mu\mu$$
: prospects

 \Rightarrow Effective yield, $Y_{eff} \sim T_P S^2/(S+B) \sim 15$ events for 300 fb⁻¹ $\rightarrow \sigma_{ACP} \sim 26\%$

How to improve it:

→ Increase T_P (unlikely big effects, already using an optimistic value) → Increase S (Downstream tracks Upstream Pixel in Upgrade-II → ~2x?)

(These will have longer lifetimes, so not $t \sim 0$ simplification may not be ok here)

$$K_S \rightarrow \mu\mu$$
: prospects

 \Rightarrow Effective yield, $Y_{eff} \sim T_P S^2/(S+B) \sim 15$ events for 300 fb⁻¹ $\rightarrow \sigma_{ACP} \sim 26\%$

How to improve it:

- \rightarrow Increase T_P (unlikely big effects, already using an optimistic value) \rightarrow Increase S
- \rightarrow Reduce B ?

$K_S \rightarrow \mu\mu$: prospects

 \rightarrow Reduce B ?

- Analysis so far optimized against combinatorial
- Analysis so far optimized for a >> SM signal
- Few handles to kill $Ks \rightarrow \pi\pi$ misid
 - More stringent muon ID
 - Per event mass uncertainty

Invariant mass resolution is not a constant, depends on particle kinematics \rightarrow this can be used to kill events in the far tails of $K_S \rightarrow \Pi\Pi$

Figure 7: Per-event mass uncertainty versus J/ψ momentum. Left: with multiple scattering. Right: only detector resolution.

https://arxiv.org/pdf/1312.5000

$K_S \rightarrow \mu\mu$: prospects

 \rightarrow Reduce B ?

- Analysis so far optimized against combinatorial
- Analysis so far optimized for a >> SM signal
- Few handles to kill $Ks \rightarrow \pi\pi$ misid
 - More stringent muon ID
 - Per event mass uncertainty
 - PV SV- momentum consistency, or other kinematic constraints

 $\frac{(\mathbf{n} \rightarrow \mu \mathbf{v} \text{ mess } \mathbf{u} \mathbf{p}}{\mathbf{track momentum}}$

$K_S \rightarrow \mu\mu$: prospects

 \rightarrow Reduce B ?

- Analysis so far optimized against combinatorial
- Analysis so far optimized for a >> SM signal
- Few handles to kill $Ks \rightarrow \pi\pi$ misid
 - More stringent muon ID
 - Per event mass uncertainty
 - PV SV- momentum consistency, or other kinematic constraints (I

 $(\underline{n} \rightarrow \mu v \text{ mess up})$ <u>track momentum</u>

Sacrifice ~50% of signal and reduce B by 90 or 99% may be not a completely crazy hope (but we don't know for sure, this is gambling atm)

Optimistic (but still reasonable) scenarios

How if we go full crazy...?

With huge efforts and quite some optimism, reaching a precision to at least <u>resolve the SM sign is not impossible</u>

Otherwise (still with huge efforts), at least BSM constraints