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new amplitude approaches

why relevant at low-energy QCD?
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Main motivation

Kaon experiment: laboratory of a broad physical program

e.g. when we have kaons – we have inevitably also pions

kaon factory → pion factory

leads e.g. to the study of π0 → e+e−

another example: the core decay π0 → γγ : next page
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π0 → γγ: short comment [kk, Moussallam ’09]

theory: Γ = (8.09± 0.11) eV or τ = 8.04± 0.11× 10−17 s

PrimEx I+II: Γ = (7.80± 0.12) eV or τ = 8.34± 0.13× 10−17 s

−→ 1.8 σ discrepancy

Fπ is a crucial ingredient

Fπ vs F̂π [Bernard, Oertel, Passemar, Stern ’08]

using π0 → γγ:

Fπ = 93.85± 1.4MeV

cf with F̂π = 92.22(7)

(1.2σ difference)

our Fπ from PDG is based on πl2 and SM using [Marciano, Sirlin’93]

important input Vud : new update by [Hardy,Towner ’20]

0.97418(26)→ 0.97373(31)
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Amplitudes

important in particle physics: Lagrangian → Feynman rules →
amplitudes → cross-section

new initiative to study these objects more deeply

annual conferences: . . . , Prague 22, CERN 23, IAS 24, Seoul 25

amplitudes as key object of theoretical studies

example → next page
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https://indico.cern.ch/event/1101193/
https://indico.cern.ch/event/1228963/
https://www.ias.edu/amplitudes2024
https://www.lecospa.ntu.edu.tw/events/scattering-amplitudes-in-taiwan


QCD: gluon amplitudes

important in high-energy collider experiments (LHC)

using conventional methods: complicated already at the tree-level

intermediate steps are complicated but the final result “nice”

standard methods hard/impossible for higher multiplicity

surprisingly some results super simple and closed for all multiplicities

An(−−+ . . .+) =
⟨12⟩4

⟨12⟩⟨23⟩ . . . ⟨n1⟩

(so called MHV, [Parke, Taylor ’86])
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pion amplitudes

[KK, Novotny, Trnka ’13]

We want to study low-energy QCD

focus on dynamics of pions, kaons, . . .

very complicated already at the tree-level for large n

simplify the problem: massless, large Nc (one trace → cyclic
ordering)

4pt: A = s13

6pt:
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pion amplitudes: new surprising way to calculate

[Arkani-Hamed et al ’23-’24]

The simplest model: Tr(ϕ3)
only one vertex:

= 1

e.g. the 4pt amplitude:

dual graph
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pion amplitudes: new surprising way to calculate

[Arkani-Hamed et al ’23-’24]

The magic:

A =
1

X13
+

1

X24

odd/even shifts:

Xee → Xee + δ, Xoo → Xoo − δ

Xeo → Xeo

Do it in Tr(ϕ3) amplitude and expand in small momenta for large δ:

A→ 1

X13 − δ
+

1

X24 + δ
∼ −X13 − X24 = s13

which is the 4pt NLSM!
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Novel way to calculate pion amplitudes

True up to all multiplicity!

can be extended to the loop level

masses can be added naturally (under investigation)

we hope we can also include higher orders (under investigation)

More interestingly - scaffolding for gluons, and via double copy also
gravity (under investigation)

natural explanation from strings

It aims to common geometric structure for all these theories!
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Conclusion: NLSM still full of surprises

amplitudes methods are important to uncover hidden structures
true also for the low energy QCD
It would be very surprising if the above miracles have no footprint in
the low-energy data
the key place to look is the O(p4) low-energy constants
last ChPT O(p4) LECs estimate: [Bijnens, Ecker ’14] ← Kl4 NA48
There are many other, both old and new theoretical methods
(dispersive techniques, BCJ, positivity bounds [Alvarez, Bijnens, Sjö ’22] . . . )

ありがとう
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Backup slides
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Summary of Classification of EFTs: “soft-bootstrap”

Non-trivial cases

for: L = ∂mϕn : m < σn ⇔ σ >
(n − 2)ρ+ 2

n

i.e.
ρ σ at least

0 1

1 2

2 2

3 3
non-trivial regime for
ρ ≤ σ

�

⇢
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P(X) DBI

NLSM

Gal
sGal

trivial soft 
behavior

forbidden

4

WZW

[C. Cheung, K. Kampf, J. Novotny, C. H. Shen and J. Trnka ’17]
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String theory considerations

string monodromy relations: [Plahte ’70]

open string amplitudes are calculated as disk integr.

n vertex operators insertions on the boundary

different orderings correspond to different choices of contours in the
integrals over the insertion points

linear relations among amplitudes from contour deformations

e.g. at 4pt:

A4(1324) + eiπα
′uA4(1234) + e−iπα′tA4(1342) = 0

in α′ expansion leads to KK and BCJ relations.
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String theory considerations

Z theory [Carrasco, Mafra, Schlotterer ’17]

iterated integrals over the boundary of a disk worldsheet
and naturally incorporate two notions of ordering

we can motivate it via the 4pt example, do the simple game:
Veneziano open string amplitude

A4 =
Γ(−1− α′s)Γ(−1− α′t)

Γ(−2− α′u)

assume you want the correct Regge behaviour and expansion in α′ starts
with O(α′1)
We will get

Z× = B(−α′u,−α′s)− B(−α′s, 1− α′t)− B(−α′u, 1− α′t)

expansion in α′ corresponds to NLSM and higher orders!
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Higher-orders NLSM

40 years of ChPT: up to NNNLO O(p8)
from the amplitude perspective?
yes!: [Dai, Low, Mehen, Mohapatra ’20], [KK ’21]

#mesons #terms

p2 4 1

p4 4 2

p6 4 2
6 5

p8 4 3
6 22
8 17
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Higher-orders NLSM: scalar BCJ bootstrap

[Brown,KK,Oktem,Paranjape, Trnka ’23]

BCJ
n−1∑
i=2

(s12+. . .+s1i )An(2, . . ., i , 1, i+1, . . ., n) = 0 ,

We focused on the statement [Gonzalez, Penco, Trodden’19]:

BCJ ⇒ Adler.

For recent studies of the KLT bootstrap see also [Chi, Elvang, Herderschee,

Jones, Paranjape ’21], [Chen, Elvang, Herderschee ’23]
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Higher-orders NLSM: scalar BCJ bootstrap

[Brown,kk,Oktem,Paranjape, Trnka ’23]

4pt
O(p#) 2 4 6 8 10 12 14 16 18

Soft amplitudes 1 2 2 3 3 4 4 5 5

BCJ amplitudes 1 0 1 1 1 1 2 1 2
not the final answer!

/ 0 / 1 / 1

analysis of 6pt (up to O(p18) and 8pt (up to O(p10)): many
surprised relations among coefficients of different orders, e.g.

α(10) ∼
(
α(6)

)2
what are “BCJ Lagrangians”?

NLSM
Z-theory
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Geometrical picture

very active and quickly developing field

Arkani-Hamed et al. 1711.09102, 2311.09284, 2312.16282, 2401.00041,
2401.05483, 2402.06719, 2403.04826, . . .

“trace ϕ3” theory: ABHY associahedron

Important choice of basis:

Xij = (pi + pi+1 + . . . pj−1)
2

cij ≡ −2pi · pj
= Xij + Xi+1,j+1 − Xij+1 − Xi+1,j
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Geometrical picture

It implies the existence of zeros of relevant amplitudes!

Are there some implications for other theories?

Bartsch, Brown, kk, Oktem, Paranjape, Trnka’24: Yes! via double copy

what is double copy? – first discovered as a relation between closed and
open string amplitudes (KLT)

Gravity ∼ YM ∗ YM

more generic than that! – e.g. at 4pt (always at tree level)

M4(1234) = −is12A4(1234)Ã4(1243)

i.e.
sGal = NLSM*NLSM

true at all multiplicity!

We used hidden zero to prove the Galileon zeros
Geometric origin of permutation-invariant theories? unknown
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EFT: simplest case

focus on two derivatives: ∂µϕ∂
µϕϕn

Single field is a trivial case → have to consider multi-flavours
ϕ1, ϕ2 . . .

case by case studies: of two, three, . . . flavours

L = 1
2∂µϕ

i∂µϕi+λijkl∂µϕ
i∂µϕjϕkϕl+λi1...l6∂µϕ

i1∂µϕi2ϕi3 . . . ϕi6+. . .

Very complicated generally

Assume some simplification using the group structure

ϕ = ϕaT a

similar to the ‘gluon case’: flavour ordering

Aa1...an =
∑
perm

Tr(T a1 . . .T an)A(p1, . . . pn)
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First example: NLSM

[KK, Novotny, Trnka ’13]

bottom-up analysis, first non-trivial case, the 6pt amplitude:

power-counting:

λ2
4 p

2 1

p2
p2 + λ6 p

2

in order to combine the pole and contact terms we need to consider
some limit. The most natural candidate: we will demand soft limit, i.e.

A→ 0, for p → 0

⇒ λ2
4 ∼ λ6 corresponds to NLSM

How to extend it to all orders (n-pt)? → new recursion relations
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