Power Converters for Energy Savings

East Area and North Area Consolidation

CERN & J-PARC/KEK high power beam workshop

Ivan Josifović SY-EPC 12-10-2024 edms. 3170427

Acknowledgements: D. Aguglia, Y. Gaillard, G. Le Godec, V. Montabonnet, K. Papastergiou, D. Xystras

Outline

- ✓ Introduction to Power Converters
- ✓ Power Converters: Concepts for Energy Savings
- ✓ Past work: East Area Consolidation
- ✓ Ongoing work: North Area Consolidation
- ✓ Conclusions

1. Introduction to Power Converters

Introduction to Power Converters

- ✓ Power converters transformer grid energy and supply it to magnet to control current.
- ✓ Energy consumption (typical)
 - > 90% of energy is consumed by magnet.
 - > 10% of energy is lost in power converters for energy conditioning.

Power converter

Introduction to Power Converters

Power converters consists of many components which define its precision, controllability (DC vs Cycling), energy efficiency, magnetic energy recoverability etc.

2. Power Converters: Concepts for Energy Savings

CERN Energy Management Panel

brings all main energy consumers and stakeholders at CERN together (edms. 2788210)

CERNs Energy Management Panel (EMP) Mandate:

- > Estimates of CERN's projected energy consumption
- Rising awareness by virtual invoices...
- ISO 50001 Certification (awarded since 2023)
 - > Setting improvement goals and monitoring,
 - > Selecting energy efficient designs and materials...

Courtesy: T. Zickler, M. Wolf, E. Freddy EN-EL, Virtual Invoice 2023: EDMS 2599454

 \checkmark

12-Oct-2024

CERN & J-PARC/KEK high power beam workshop

Powering for Energy Savings: Consume Less

- Power magnets only when beam passing
 - \succ Cycled operation instead of DC \rightarrow Magnets compatibility for cycling
 - \succ Economy modes min RMS for current \rightarrow enabled by new FGC electronics / software
- > Potential savings dependent on "Duty Cycle (D)" of accelerator

CERN

Magnet Duty cycle in different Accelerators

Powering for Energy Savings: Improve Efficiency

- > Power converter efficiency depends on the performance of its sub-systems / components.
- > Efficient powering means higher CAPEX and lower OPEX.

Power transformers

Semiconductors power stack

Si IGBTs, Efficiency: 95 %

SiC MOSFETs, Efficiency: 98 %

Efficiency increase

- ✓ Soft-switching techniques
- ✓ SiC and GaN (wide band-gap) semic.
- ✓ Use of wide band-gap often limited by reliability concerns when cycling and available CAPEX.

Powering for Energy Savings: Recover Energy

- \succ Resistive losses → non-recoverable energy from grid
- \blacktriangleright Magnetic energy \rightarrow recoverable, exchanged with energy storage in converter

Magnetic energy recoverable when cycling

non-recoverable recoverable 4.8s North Area 9.6 s SPS 1800kJ 340kJ 450 ms East Area 340kJ 340kJ 4.8 s 50 ms PS PS complex ٨٨٨٨٨٨٨٨ 20kJ 340kJ 245

Recoverable vs non-recoverable energy

Courtesy: K. Papaestergiou: https://cerncourier.com/a/powering-for-a-sustainable-future/

Powering for Energy Savings: **TOC = CAPEX + OPEX**

- > Optimization of Total Ownership Cost (TOC):
 - > CAPEX: CAPital EXpenditures: Expenses for initial purchasing and/or for extending lifetime of the asset
 - > OPEX: OPerating EXpenses: Ongoing expenses inherent to the operation of the asset
- System level optimization: converters + magnets (+ cooling...e.g. indico1407783)
- > Components level optimization: consider TOC and not only CAPEX in Tendering?

System level TOC Optimization

Benefits of TOC optimization vs Risk of amplified CAPEX

Component Level – Transformer TOC

3. East Area Consolidation

East Area Consolidation

East Area: Slow extraction physics

Physics during 0.45 s / every 4.8 s

CONS motivation: aged converters

Consumed energy continuously:

- > 9.1 GWh / year
- Operated in DC while used for ~10% of time (PS Super-Cycle)

Consolidation for Energy Sustainability:

- \succ TOC = CAPEX + OPEX
- > Consolidation completed in 2020.

12-Oct-2024

CERN & J-PARC/KEK high power beam workshop

East Area Consolidation: Consume Less, DC to Cycling

Cycling operation (D =0.1!) would have leaded to large energy savings

Cycling operation required magnets consolidation

- 23/55 magnets were with solid yokes do not support cycling
- Eddy currents would heat up the yoke material

Recoverable energy was significant due to short-cycling period (4.8 s)

Courtesy: K. Papaestergiou: edms. 1770489

East Area Consolidation: CAPEX + OPEX Results

Magnets with laminated yokes

Measured in 2012: 9.10 GWh (before CONS) Measured in 2021: 0.51 GWh (after CONS) Energy Savings: 8.50 GWh / year OPEX savings: 510 kCHF / year (@ 60 CHF / MWh) Capacitors for energy recovery

SIRIUS converters

CAPEX SIRIUS + Energy Storage: 1.5 MCHF CAPEX magnet yokes: 1.3 MCHF Total CAPEX: 2.8 MCHF

Total CAPEX can be amortized through lower OPEX in \sim 5 years.

4. North Area Consolidation

North Area Consolidation

Magnets consolidation: Consume Less?

Energy Consumption in 2018 (study from 2019)

> DC magnets (1/3 of total) consume \sim 2x more than the cycled

Consume Less going from DC to Cycling Mode?

- > Duty Cycle of NA is $D = 0.4 \rightarrow$ the savings potential are not the same as in East Area (D = 0.1)
- > CAPEX for laminated yokes ~ 9 MCHF (2019)
- Return on CAPEX (yokes) through energy savings: > 20 years

CAPEX amortization for Magnets Yokes through Electricity Savings was > 20 years. Future Converters shall be compatible with Cycling Mode for potential Magnets CONS in future.

POLARIS Converter for North Area

- > Consolidation with POLARIS converter family (for 95% of all magnets)
- Modularity for current / voltage / power upgrade
- > Compatible with DC & Cycling mode of operation integrated energy storage

POLARIS S 360 V / 400 A / 50 kW

CERN

POLARIS 2P 360 V / 800 A / 100 kW

POLARIS 4P 360 V / 1600 A / 200 kW

POLARIS Converter: Consume Less & Recover Energy

- Magnets which are already cycling consume ~33 GWh / year (~3.3 MCHF / year) \geq
- Consume less by ramping up/down faster
- Recover energy from large (high-energy) magnets \geq

Old converters w/o Energy Recovery

Line Supply Unit

Magnet Supply Unit

Old converters

1Q converter operation

- Slow current ramp rates •
- No energy recovery ٠

New POLARIS converter with Energy Recovery

B-field

Line Supply Unit

 $\downarrow \downarrow \downarrow \downarrow$ E-field Magnet Energy

New POLARIS converters 4Q-converter operation

- Fast current ramp rates
- With energy recovery! •

I. Josifović, SY-EPC

12-Oct-2024

Recovery Unit

POLARIS Converter: Consume Less & Recover Energy

50% of converter CAPEX (Phase I + II) can be amortized by lower OPEX after 15 years.

I. Josifović, SY-EPC

(*) Operation hypothesis:

Average operation at 0.7xlref (0.49 x Pref), 5500 hours / year, Stabilization time = 0.5 s, Electricity cost = 100 CHF / MWh, The same energy efficiency of old and new converters

POLARIS Converter: Improve Efficiency

Target converter efficiency: > 92% at full load

POLARIS Converter: Efficiency vs Standardisation

Efficiency vs Load

- > Circuits operated at higher power have high-efficiencies
- \succ Circuits operated at low power have lower efficiencies \rightarrow acceptable for standardization reasons

Semiconductors Power Stack: Improve Efficiency?

Improve efficiency by deploying SiC semiconductors?

- > Technology not yet suitable for power cycling applications
- > Lifetime estimation: 5 million magnet current cycles
 - > 4 years in North Area (1 year in East Area, 6 months in PS)
 - > Power stack needs to be replaced 3 times in a lifetime (15 y)

North Area Case: SiC vs Si

CAPEX increase: +28 kCHF unit → +23.8 MCHF / 850 units!

- SiC Power Stacks CAPEX: + 5.95 MCHF / 850 units
- > Spare power stacks CAPEX: +17.85 MCHF / 850 units

OPEX reduction: -3.5 MCHF / 850 units / 15 years

- Power stacks not used at full power
- > 3% gain in efficiency \rightarrow savings 35 GWh / 15 years

Semiconductors power stack

Si IGBTs, Efficiency: 95 %

SiC MOSFETs, Efficiency: 98 %

Courtesy: G. Le Godec, D. Xystras

Moving towards SiC would explode CAPEX which cannot be compensated through gains in energy efficiency and lower energy bills.

(*) Operation hypothesis:

Average magnet operation at 0.7xlref (0.49 x Pref), 5500 hours / year, 850 transformers, Electricity cost = 100 CHF / MWh

Transformer: TOC (CAPEX + OPEX) Considerations

- > Contract adjudication based on TOC not followed due to high risk for large CAPEX increase
- > Contract adjudication: minimum CAPEX + Compliance to Maximum allowed Power Loss
- > Power losses: total loss + distribution between core and windings
- \blacktriangleright Power loss distribution matters! Loss in core consumed constantly even when Imag = 0 A.

Eco-design Requirements

Ecodesign Directive 2009/125/EC sets requirements for energyrelated products to ensure energy efficiency and environmental protection. Regulation No 548/2014 specifies Ecodesign criteria for power transformers with a minimum rating of 1 kVA.

Initial design (1050 W)

CAPEX = CONST MCHF

22.3 GWh (*)

OPEX = 2.2 MCHF

(*) Operation hypothesis:

210 W Stow

Final design (1050 W)

CAPEX = CONST CHF 17.5 GWh (*)

OPEX = 1.7 MCHF (-480 kCHF)

I. Josifović, SY-EPC

12-Oct-2024

Average magnet operation at 0.7xlref (0.49 x Pref), 5500 hours / year, 850 transformers, Electricity cost = 100 CHF / MWh

Conclusions

- > Magnets will remain the largest energy consumers (90% in magnets, 10% in converters).
- > Large energy savings can be made by moving from DC to Cycling Operation (example East Area).
- Considerable energy savings can be made by optimized current cycling (delayed ramp-up) in combination with energy recovery (example North Area).
- Energy recovery is sustainable approach and return on capital investment can be achieved over a lifetime of the equipment (example North Area).
- > The energy efficiency of new generation power converters remains high (92%). Improving efficiency of converter's components is possible but with highly increased (often non justified) Capital Investments.
- The optimization of Total Ownership Cost (CAPEX+OPEX) on the component level can be possible without increase of capital investments (example POLARIS transformer).

