Development of TiO₂ wide bandgap semiconductor detectors for intense pulsed proton beam monitoring at J-PARC

Trupti Mangesh Raut IISER Pune

New method for fabricating thin TiO₂ detectors

Earlier

Thin (0.3um) TiO₂ layer on 1.5mm Quartz support

In 800C, TiO₂ crystal is formed on the surface

Current state of the art(craft) - fabrication

Temperature profile for annealing: 27C to 800C in 2 hours Stable at 800C for 10 minutes 800C to 27C cooling period

Current state of the art – characterization

UV-vis spectrophotometry gives bandgap

λ = 400nm

 $E_{g} = hc/\lambda$ = 1240(eV-nm)/ λ (nm) ~2.6 eV (close to published value)

Ref. Landmann, M., Rauls, E., & Schmidt, W. G. (**2012**). The electronic structure and optical response of rutile, anatase and brookite TiO₂. *Journal of Physics: Condensed Matter, 24*(19), 195503.

XRD shows stable Rutile-phase

Sample MT3.1 which was oxidized for 20 minutes Shows combination of Ti and TiO₂ peaks

Sample MT3.2 which was oxidized for 6 hours in 50SCCM O_2 environment for 6 hours Shows exclusively TiO₂ peaks.

Problem:

In our fabrication process, all exposed surface of Ti gets oxidized to TiO

We need to make electrical contact to the core Ti, to set it at ground potential to make a detector

with low dark current high signal