

Photon Energy Booster of X-ray Free Electron Lasers through Compact Beam-driven Plasma Wakefield Acceleration

Letian Liu

Peking University 2024/11/3

Why high-photon-energy XFEL?

- Laser: $\sim eV \implies XFEL: 0.1 \text{ keV to } >20 \text{ keV}$
- >20 keV XFEL can do:
 - Coherent X-ray Diffraction Imaging (CXDI) on Mesoscale Materials
 - Nuclear Resonant Excitation (NRE) of suitable isomers...

CXDI: 100 μ m Fe at 20 keV¹

NRE: ⁷³Se (25 keV), ⁸⁵Y (20 keV)...²

$\hbar \omega_r \propto \gamma_e^2 \Rightarrow$ Improve electron energy

¹Barber et al., Phys. Rev. B 89, 184105; ²Wense et al., Nature 533, 47–51 (2016); Tuli, J. K. Nuclear Wallet Cards 8th edn (National Nuclear Data Center, Brookhaven National Laboratory, 2011).

Plasma wakefield acceleration as a photon energy booster

lcls.slac.stanford.edu/overview

- RF Linac: limited to ~MV/cm, large size & high cost
- PWFA: High acceleration gradient ~GV/cm
- Two-bunch PWFA → embedded into XFEL facility as an energy booster²
- Demonstrate the feasibility of the scheme through detailed analysis and start-to-end simulations

LBNL: ~8 GeV in ~20 cm plasma¹

Two-bunch PWFA

Schröder et al., arXiv: 2407.15583

¹Gonsalves et al., Phys. Rev. Lett. 122, 084801 (2019); ²Joshi et al., Plasma Phys. Control. Fusion 60(3), 034001; ³Schröder et al., arXiv: 2407.15583;

Plasma wakefield acceleration as a photon energy booster

Two thresholds of FEL: $\varepsilon \lesssim \lambda_r / 4\pi$ & $\Delta \gamma_e / \gamma_e < \rho$

 $\varepsilon \lesssim \lambda_r / 4\pi$

• ε_n is preserved by the linear focusing field in the plasma wake in PWFA

 $\Delta \gamma_{e} / \gamma_{e} < \rho \sim 10^{-4}$

- Uniformity of E_z in the bubble
- Transverse: uniform
- Longitudinal:
 - Unloaded: $dE_z/d\xi \sim 1/2$

Can be flattened by beam loading¹

Find the optimum loading case

- E_z on axis from one-step PIC simulation by QuickPIC
- (b)(d) is calculated from (a)(c) using

$$\delta_W = \frac{\Delta W}{W} = \frac{\Delta \gamma_e}{\gamma_e} = \left| \frac{1}{E_z} \frac{\mathrm{d}E_z}{\mathrm{d}\xi} d_{slice} \right| \cdot \frac{W - W_0}{W}$$

In case $\Delta = 70 \ \mu m \& I = 2 \ kA$ (red line), 53% (54 pC) of e^- meets $\delta_W < \rho_0^{-1}$

 ${}^{1}\rho_{0}$ represents the Pierce parameter ρ at peak current I = 2 kA.

Start-to-End Simulation Setup

PWFA Parameters: QuickPIC ۲

• $\lambda_u = 2 \text{ cm}, B_0 = 1.5 \text{ T} (K = 2\sqrt{2})$

	W[GeV]	σ_W [keV]	I[kA]	Q[pC]	$\epsilon_n[\mu m]$	$\xi_{d,w}[\mu m]$	$\sigma_r[\mu m]$	
Driver	8	80	2	269	1.2	0	0.52	
Witness	8	80	2	103	0.4	70	0.3	
Plasma (Li): $n_0 = 7 \times 10^{16} \text{ cm}^{-3}$, $L_{acc} = 1.26 \text{ m}$								

•

- Beam-driven Plasma Wakefield Acceleration can be utilized as a compact photon energy booster of X-ray Free Electron Lasers.
- Through optimization of the beam loading effects, nearly half of the electrons meet the two FEL thresholds.
- 7.2 GeV gain in the electron energy is achieved in a 1.26-m-long plasma, leading to a 3.6 times improvement in photon energy up to 22 keV, together with the saturation power over 100 GW.

Thank you for listening!

- The ion density changes due to the ultrahigh density of the Driver and Witness (~1000)
- It may cause:
 - Transverse: nonlinear focusing field $\rightarrow \varepsilon_n \uparrow$
 - Longitudinal: $\partial_z F_r = \partial_r F_z \rightarrow \delta W \uparrow$
- Critical density: $n_d/n_0 \gg m_i/m_e$
- Lithium is used to suppressed the ion motion
- $\varepsilon_n \uparrow \text{ and } \delta W \uparrow \text{ is negligible in our setup}$

Quadrupole Magnet and drift

QM		QM1	QN	12	QM3	C	QM4	QM5		QM6
l/m		0.11	0.1	6	0.11	0	.13	0.08		0.13
k/m^{-2}	2	-13.1	15.	1	-13.1	e	5.7	-7.7		6.7
D	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10
<i>L</i> /m	0.18	0.41	0.41	1.1	1	0.5	1	0.89	1.3	1.3

Dipole

BM	BM1	BM2	BM3	BM4
<i>L/</i> m	0.1	0.1	0.1	0.1
θ	-10^{-3}	10 ⁻³	10 ⁻³	-10^{-3}

- FODO lattice was designed with
 - $k = 1.79 \text{ m}^{-2}$, l = 0.04 m, L = 2 m

- The spontaneous radiation will cause an average energy loss to the electron beams.
- Can be compensated via Tapering (In this setup, $a = -7.8 \times 10^{-5} \text{ m}^{-1}$)

