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The standard model + neutrino mass

® Clearest empirical evidence that the minimal SM is incomplete:
— Dark matter
— Baryon asymmetry of the Universe
— Neutrino mass
— Inflation in the early universe [have a plausible theoretical picture]
— Dark energy [cosmological constant? need to know more?]

® We do not even know the Lagrangian that describes the particles we have observed
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Do neutrino mass terms violate lepton number? 10 or 12 parameters in lepton sector?
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The mixing of neutrinos

® Fermions with same quantum numbers mix, Yukawas define mass eigenstates:
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® The additional phases 7, 2 do not affect oscillation experiments, only lepton # violation

® |t is often said that we should measure all parameters in the Lagrangian... although...
(Wolfenstein: ‘I do not care what the values of the Wolfenstein parameters are, so you should not either;
the only question is if their independent determinations give consistent results’)

® However, it is n; o and not §, which is the least known parameter of the PMNS matrix
Can we ever hope to measure a different linear combination than what enters Ov557?
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Neutrino oscillation measurements

® Three mixing angles have been measured

® Oscillation between two flavors (6m? = m? — m3)
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® Solar neutrinos: ém?*L/E > 1

cos6

® Two mass-squared differences have been measured,
but not the absolute mass scale
(Short baseline anomalies not easy to fit, even with 4 flavors)
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Neutrinos — many unknowns

® Are neutrinos = their own antiparticles?
(Different than all other known particles? Theoretically favored, most leptogenesis models)

' ?
¢ What IS the abSO|Ute Mass SCale | normal ordering (NO) inverted ordering (10)

Two mass-squared differences measured m? 4 A m?
At least one state m,, & 50 meV

Cosmology: > m; <0.072 eV [DESI 2024]
(n.b.: preference for > “m; <0 [e.g., 2407.07878])

® Value of (' violating phase § ?

N V3

® |s the mass ordering “normal” (NO) or “inverted” (10)? nid————dp
" L} L . - W— V \/_

If IO, neutrinoless double beta decay (0r33) experiments will decide PR ,u?

If NO, may or may not see 0v33, even in Majorana case h——
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https://arxiv.org/abs/2404.03002
https://arxiv.org/abs/2407.07878

Neutrinos — a history of surprises

® Most theorists’ expectations around early 1990’s:

Solar neutrino problem will go away, we do not understand the Sun

If it does not, solution must be small angle MSW, since it’s cute

Expect Am§3 ~ 10 — 100eV?, since it's cosmologically interesting (DM)
Expect 0235 ~ V., ~ 0.04, motivated by simple GUT models

Atmospheric neutrino anomaly will go away, because it requires large
mixing angle — the first that became compelling (= Nobel, 2002)

2000s: tribimaximal mixing ansatz, predicted 6,3 near zero
013 ~ 97, not too small — helps C P violation searches

[inspired by H. Murayama]

® Experiments crucial, independent of prevailing theoretical “guidance”

Wrong
Wrong
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Wrong
Wrong

Wrong
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Quark vs. lepton mixing

® Mixing matrix parameters, assuming 3-generation unitarity:

Upyng @ sin 819 = 0.550 £ 0.011 sin 013 = 0.148 £ 0.002
sin 0,3 = 0.749 4+ 0.010 o = (1771_%8 ° [unconstrained at 307 [vfit 2024, NO, converted]

VCKM i sin 912 — 0.2250 = 0.0007 sin 913 = 0.0037 £ 0.0001
sin 023 = 0.0418 4- 0.0008 b = (65.7 £ 1.5)° [PDG 2024]

® Are the origin of quark and lepton masses and mixings related?
® Some lepton processes are especially clean; quark sector much more rich
® Neutrino FCNCs seem impossible to search for; e.g., v; = v;v, X — v;v;(Y)

® SM flavor puzzle extended: why lepton and quark masses and mixings so different?

~
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http://www.nu-fit.org/?q=node/294
https://pdg.lbl.gov/2024/reviews/rpp2024-rev-ckm-matrix.pdf

Quark vs. lepton mixing (2)
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https://arxiv.org/abs/2004.13719

Why don’t we know yet if Majorana or Dirac?

® |In the m, — 0 limit, the distinction between a Dirac and Majorana fermions disappears
Except for oscillation experiments, no consequence of m, # 0 has ever been observed

® Any experiment to probe the nature of neutrino mass involve suppression by oc m, /E
FCNC neutrino decays allowed, e.g., v3 — 117, v3 — v — rates extremely small

® The smoking gun signature would be the observation of lepton number violation
(Majorana neutrinos are their own antiparticles, thus cannot carry any quantum number)

® Neutrinos we can study are always ultrarelativistic

Exception: cosmic neutrino background (7}, ~ 2K ~ 2 x 10~%eV)
(In Majorana case, both v and 7 interact with detector)
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Experimental challenges detecting LNV

® The rates are suppressed by m,,, need huge statistics

Best chance is 0v34, rate o« m?2,

_ 3 2
Mee = ‘ D imimiUg

single pha<53

NO

Planned experiments will reach m.. ~ 0.01 eV, decisive for IO
For NO, m.. can vanish even if neutrinos are Majorana 1X10405 o+ 0001 0010 0.100

my [eV]

® Second best: ;~ — et conversion, search for ppu~ — nne™ (. — :
. 3 T
Proportional to my,. = | Y7_; m; UeiUy| - ¥

Mu2e and COMET will improve current bound to ~10~1¢

® Expectation from PMNS much smaller; patterns would give powerful constraints

~
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‘ Invariants and conventions ‘

1 C13 s13e” " C12 S12 e’
® M|X|ng matrIX U = C23 S23 1 — 812 C19 e''2
— 823 C23 —8136“s C13 1 1

These quantities are not physical / phase convention independent
E.g., the Majorana phases 7; and 7, can be shifted to 2nd at 3rd (or 1st and 3rd) entries

® Dirac phase = C'P violating phase measurable in LN conserving processes
Majorana phases = only accessible through LNV processes

® For CKM, it is well known that 4 elements are needed to define a physical CPV quantity:
taigj = UaiUp;Ug;Ug;

For Majorana fermions, fewer phases can be absorbed in field redefinitions, hence
saij = Uai U, are physical

ZL-p. 10 crere) m



Our choice of parameters

® For Dirac fermions, 3 mixing angles and a phase:
{|te2es]s [teses|s [tuzesl, ¥}, VUp = arg(tuze3) = arg (6126236_1'(S — $12523513)
(—|tu2e3| sin ¥ p = J, the leptonic Jarlskog invariant, the same way as for CKM)

® For Majorana fermions, 2 additional phases:

{ @12, Pz} = {@F,, PY3} ®;; = arg (5ais)

E.g., @12 =1 — 2, €tc.

~
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Generalizing m..

® |f interested in other LNV processes besides 0v33, it is natural to generalize:

Map = ’ Z?Il m; an;Um‘ a, B € {e u, T}
Explicit expressions are not too iIIuminating simplest is:
mge = (m Cl2 + m2 12)013 + m3 13 + 2m1mgs?203201113 Cos [2(771 - 772)]
+ 2m1m3032333033 cos [2(771 + 5)] + 2m2m3832s?30%3 cos [2(772 + 5)]
® The rate of a lepton number violating process is proportional to — -
the corresponding m2 i -«
For example, the = — e™ conversion rate mie Mu > i\ ]
Sensitivity to each Majorana phase scales as the product of cor- > >
responding masses, m; m; = large suppression TN Z) = et (N, Z = 2)

(in suitable nuclei)

~

ZL-p.12 :\\ﬁ‘

BERKELEY CENTER FOR
THEORETICAL PHYSICS  |BERKELEYLAB



Experimental bounds, in a nutshell

Experimental bounds: o
Lepton number and flavor violating processes

OVBB meﬂ Mer
( 12 zio_l@@j " 10?‘2 C—4-2 5 1703 \ ..... Spreadof14orders .....
Mag < 50 (4.4 x 10%) | GeV . of magnitude 5
™My, O | e
\ 2.0 x 10* )
mTT

updated from Rodejohann, Zuber, 0011050 [from S. Gori]

® Experimental sensitivity to Ov33 searches are by far the best, since macroscopic
amounts of nuclei are used, rather than particle beams

® Mu2e & COMET will improve the bound on m,,. by ~4 orders of magnitude
Tiny rates: ~ 3 x 107**(m;_/m?2)|M|*
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The single phase limit

® We define {vy, 1o, v,} so that v, is always the lightest state

O my, — 0
Mags (instead of n; 2 only one n)

® Proof: a symmetric rank-2 neutrino Yukawa matrix has 5 real
and 5 imaginary parameters (for rank-3: 6 real & 6 imag.)

The charged lepton Yukawas contain 9 + 9 parameters

The global U(3);, x U(3)g symmetry is completely broken,
allowing to remove 6 + 12 parameters, leaving 5 masses, 3
mixing angles, and 2 phases (one Dirac and one Majorana)
as physical parameters

Vo= V3 Vo = Vs
Vo= Vq
T N
our / PDG convention
351 o —
single phase
0.050 ~
10 |
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gy single phase
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é NO
0.001¢
5.x 1074}
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my [eV]

vertical lines show where single phase limit
becomes a good approximation
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Majorana phase from m., in single phase limit
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Insets show that as m; gets small, measurement of m.. determine ®,,

® [f the lightest m,, gets small, the correlation between m.. and all other m,3 get stronger

~
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Predicting m,. from m,,
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A no-loose “theorem”

0.100 p————rrrr———r e 0.100¢
® With current PMNS and Am? central ﬁ i
values, m.. and m,. cannot simulia- oo 0,010,
neously vanish (even in case of NO) _ =
o . G000t £ 0.001;
:> In pl’lﬂCIp'G, LNV |S deteCtable Wlth s 23 élei,-,Ami,-2 at central values
better m,,. sensitivity, even for NO 10+ 7107 varedwitin 20
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- . - NO NO
° Tanta“ZIng PMNS values: me. + Mue 0T e ooor oot o O 0.0001 0001 001 0.1
cannot vanish (barely, at the 20 level) m foV] m [eV]

[Dery, Gori, Grossman, ZL,[2406.18647]

® Very challenging (impossible?) to reach such sensitivity
Neutron stars contain ~10°° u—, can it be used somehow?  [pery, Gori, Grossman, ZL, in progress]

~
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https://arxiv.org/abs/2406.18647

Similar story for m;

0100 sy 0100 s
0.010§ 0.010§
s i > e
o, L onapql Tl
3 0.001 : 3 0.001 g ~
g . g . \
\
\
I I \
1074 1074t !
- 6j, Am{ at central values - 6, Am] at central values |
L b 1
1
NO NO ;
10—5.. N N . 10—5” L L d o
105 107 0.001 0.010 0.100 105 107 0.001 0.010 0.100

my [eV] my [eV]

® Experimental prospects to probe these may be even more remote
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Summary

® Whether neutrino mass terms violate lepton number is the most significant open ques-
tion about particles we have seen — experimental discovery would be transformational

® Ov (55 experiments are sensitive to one linear combination of the two Majorana phases
(i) may discover LN violation; (ii) may rule it out (IO); (iii) may not find out (NO)

® Seems very challenging

® Single phase limit: as the lightest neutrino mass gets smaller, all m,, depend on a
single combination of the two Majorana phases

® How far can sensitivity to m,. be pushed?

® Nonrelativistic neutrinos? Room for new ideas!
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