

Analysis of Flavor Models by Diffusion Model

Satsuki Nishimura (Kyushu U.), Hajime Otsuka, Haruki Uchiyama Soon to be submitted [arXiv:2503.xxxxx]

Machine Learning (⊂ AI)

• A technique in which a computer extracts hidden rules or patterns as it iteratively learns data.

Supervised Learning

Reinforcement Learning

- S. Nishimura, C. Miyao, H. Otsuka,
- · JHEP12(2023)021 (2304.14176 [hep-ph])
- · 2409.10023 [hep-ph]

Unsupervised Learning

K. Ishiguro, S. Nishimura, H. Otsuka,JHEP08(2024)133 (2312.07181 [hep-th])

2025/02/18-21

KEK-PH 2025 winter

• A type of generative AI, which is used in image generation.

Ex) AI services "Stable Diffusion" & "DALL-E in ChatGPT"

Diffusion process
 Adding noises to data

Reverse process : Remove noises from Gaussian noise

• Diffusion process: Initial pictures are added noises until they become pure Gaussian noises.

• Reverse process : Pictures are generated by denoising.

Ex) Make an image with a touch of Salvador Dalí.

KEK-PH 2025 winter

• Conditional DM: Pictures are generated with conditional labels.

Ex) Make an image of "The Persistence of Memory" by Salvador Dalí,

with a touch of Van Gogh.

Key Point

• Using the diffusion model, we analyze S'_4 modular flavor model.

• We found various parameters as an inverse problem, and show the S'_4 model occurs spontaneous CP violation.

The Standard Model (SM)

• SM describes the behavior of elementary particles with a high degree of accurately. It is valid for ~ 10⁻¹⁸ m. However, there are many problems.

(neutrino masses, generation, ……)

• The search for new physics beyond the Standard Model (BSM) is the challenge in particle physics.

Flavor Physics Flavor Mixing Mass Hierarchy

Modular Flavor Model (1)

- Modular flavor symmetry can explain the hierarchical structure of the quarks & the leptons. Ex) SL(2,Z), $\Gamma_2 \simeq S_3$ (symmetric group of degree 3), S'_4 (double covering of S_4)
- Yukawa couplings are representation of modular symmetry. These depend on moduli τ remaining as a degree of freedom.

Modular Flavor Model (2)

Superpotential of S'₄ modular flavor model

Y.Abe, T.Higaki, J.Kawamura, T.Kobayashi Phys.Lett.B 842 (2023) 137977

$$W = H_u \left\{ \sum_{a=1}^{2} \alpha_a \left(Q Y_3^{(k_{ua} + k_Q)} \right)_1 u_a^c + \alpha_3 \left(Q Y_{\widehat{3}}^{(k_{u3} + k_Q)} u_3^c \right)_1 \right\}$$
$$+ H_d \sum_{i=1}^{3} \left\{ \beta_i \left(Q Y_3^{(k_{di} + k_Q)} d_i^c \right)_1 \right\}$$

• Under modular transformation, modular form with weight k is defined as a function such that $f_i(\gamma \tau) = (c\tau + d)^k \rho_{ij}(\gamma) f_j(\tau)$. Y_3^k means 3 representation with weight k.

Modular Flavor Model (3)

• When representations and weights are fixed, Yukawa couplings are calculated using modular forms.

$$Y_{u} = \begin{pmatrix} \alpha_{1} \left[Y_{3}^{k_{u1}+k_{Q}}(\tau) \right]_{1} & \alpha_{2} \left[Y_{3}^{k_{u2}+k_{Q}}(\tau) \right]_{1} & \alpha_{3} \left[Y_{\widehat{3}}^{k_{u3}+k_{Q}}(\tau) \right]_{1} \end{pmatrix}$$

$$Q_{u} = \begin{pmatrix} \alpha_{1} \left[Y_{3}^{k_{u1}+k_{Q}}(\tau) \right]_{1} & \alpha_{2} \left[Y_{3}^{k_{u2}+k_{Q}}(\tau) \right]_{1} & \alpha_{3} \left[Y_{\widehat{3}}^{k_{u3}+k_{Q}}(\tau) \right]_{1} \end{pmatrix}$$

$$Q_{u} \left[Y_{3}^{k_{u1}+k_{Q}}(\tau) \right]_{2} & \alpha_{2} \left[Y_{3}^{k_{u2}+k_{Q}}(\tau) \right]_{2} & \alpha_{3} \left[Y_{\widehat{3}}^{k_{u3}+k_{Q}}(\tau) \right]_{2} \end{pmatrix}$$

- To reproduce masses and mixings of the quarks,
 - O(1) constants α, β and moduli τ should be determined properly.

Motivation

- Diffusion model is known as "Generative AI" (generate new data and information based on learning)
- It may be possible to
 - generate unknown parameters that reproduce the flavor structure in an observable-driven way (Inverse problem)
 - consider <u>a wide range</u> of parameters without limiting the search space (in contrast to conventional methods)

Procedure of Learning

• Generating parameters
$$G = \{\tau, \alpha, \beta\}$$
 $(\alpha, \beta \text{ are real})$

Calculated observables as labels $L = \left\{ \frac{m_u}{m_t}, \frac{m_c}{m_t}, \frac{m_d}{m_b}, \frac{m_s}{m_b}, \left| U_{ij}^{\text{CKM}} \right|, J^q \right\}$

For various time step t,

- 1) G is prepared randomly, and related label L is calculated
- 2) A random fluctuation ΔG (noise) is added as $G_t = \frac{T-t}{T}G + \frac{t}{T}\Delta G$
- 3) A neural network is trained to predict ΔG from G_t & L

Neural Network (1)

- The mathematical model of brains. It has input layers (x) & output layers (y).
- Outputs are calculated from the inputs
 using parameters W, b (weight & bias)
 activation function f

$$y_1 = f(W_1x_1 + W_2x_2 + W_3x_3 + b)$$

Neural Network (2)

• In the diffusion model,

input: noised data & label info

output: predicted noise

• Weight *W* & bias *b* are updated to decrease the difference between added noise and predicted noise.

Example of Learning (1)

1) G is prepared randomly, and related label L is calculated

$$G: \{\tau, \alpha, \beta\} = \{1 + 2i, 3, 4\} \rightarrow L: \left\{\frac{m_u}{m_t}, \frac{m_c}{m_t}\right\} = \{10^{-2}, 10^{-1}\}$$

2) A random fluctuation ΔG (noise) is added

$$\Delta G$$
: $\{0.8 - 0.6i, -0.4, 0.2\} \rightarrow G_t$: $\frac{G + \Delta G}{2} = \{0.9 + 0.7i, 1.3, 2.1\}$

Example of Learning (2)

3) A neural network is trained to predict ΔG from $G_t \& L$

$$G_t$$
: {0.9 + 0.7 i , 1.3, 2.1}

$$L: \{10^{-2}, 10^{-1}\}$$

$$\Delta G_{\text{NN}}$$
: {0.7 + 0.1*i*, -0.2, 0.1}

update parameters of NN to minimize the difference

$$\Delta G$$
: {0.8 - 0.6 i , -0.4, 0.2}

Procedure of Generating

• Generating parameters $G = \{\tau, \alpha, \beta\}$

$$G = \{ au, lpha, eta\}$$

Physical observables as labels $L_{\text{exp}} = \left\{ \frac{m_u}{m_t}, \frac{m_c}{m_t}, \frac{m_d}{m_b}, \frac{m_s}{m_b}, \left| U_{ij}^{\text{CKM}} \right|, J^q \right\}$

- 1) Pure noise G_T is prepared from Gaussian distribution
- 2) A predicted fluctuation ΔG is denoised as $G_t = \frac{T-t}{T}G_{t+1} \frac{t}{T}\Delta G$
- $\overline{3}$) New data G_0 is generated along experimental label $L_{\rm exp}$

Example of Generating (1)

• We adopted real values of observables during generating.

$$L_{\text{exp}}$$
: $\left\{ \frac{m_u}{m_t}, \frac{m_c}{m_t} \right\} = \{5.4 \times 10^{-6}, 2.8 \times 10^{-3} \}$

1) Pure noise G_T is prepared from Gaussian distribution

$$G_T$$
: {-0.3 + 0.7*i*, -1.2, 0.5} from $N(0,1)$

Example of Generating (2)

2) A predicted fluctuation ΔG is denoised

$$G_T$$
: $\{-0.3 + 0.7i, -1.2, 0.5\}$ $\{0.08 - 0.02i, -0.06, 0.1\}$

$$G_{T-1}$$
: $\frac{G_T - \Delta G}{2} = \{-0.19 + 0.36i, -0.57, 0.20\}$

3) New data G_0 is generated along experimental label L_{exp}

Progress of Generating (1)

• From the parameters found by DM, 14 observables are calculated.

$$\left\{\frac{m_u}{m_t}, \frac{m_c}{m_t}, \frac{m_d}{m_b}, \frac{m_s}{m_b}, \left|U_{ij}^{\text{CKM}}\right|, J^q\right\}$$

• χ^2 is defined from calculated & experimental values $v_{\rm cal}$, $v_{\rm exp}$

$$\chi^{2} = \sum \chi_{i}^{2} = \sum \frac{\left(v_{i,\text{cal}} - v_{i,\text{exp}}\right)^{2}}{v_{i,\text{error}}^{2}}$$

Progress of Generating (2)

• The distributions of moduli τ with high accuracy are shown. (with an increase in the data generated by the DM)

Result: Various Solutions

• The flavor structure of S'_4 model is sensitive to Im τ . It is an arduous task to find good parameter regions. Analytically, large Im τ is preferred. (Ex: Im $\tau = 2.8$)

• We found various solutions with smaller Im $\tau \sim 2.2$ even without strict limitations for param. region.

Result: Spontaneous CP Violation

• Coefficients α , β are real. We found Re τ reproduces Jarlskog invariant, so spontaneous CP violation is derived.

$$J_{\rm DM} \sim 2.70 \times 10^{-5}$$
, $J_{\rm exp} = 2.87 \times 10^{-5}$

In previous works, complex coefficients are
 often introduced to reproduce CP violation.
 It is interesting to find the parameters with SCPV.

Summary: application of DM for flavor physics

- We focused on the S'_4 modular flavor model, and searched parameters with diffusion model.
- We found various parameters with smaller Im τ which reproduce the flavor structure of quark sector in an observable-driven way. This approach do not need constraints on searching region.

Summary: application of DM for flavor physics

• Even when coefficients of Yukawa are real, the S'_4 model occurs the spontaneous CP violation.

Outlook

• Will spontaneous CP violation be visible with A_4 or other modular symmetries? Will non-trivial parameters be discovered?

• We hope to construct a framework that get predictions

from flavor models
by simply specifying
the experimental values.

