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Short summary

Our work is . . .

constructing black string solutions in the SM numerically.

Its existence is predicted by the swampland conjecture.

There is a no-go theorem prohibiting the existence of black strings in 4d theory . . .

→ by considering Casimir energy in energy-momentum tensor, the no-go theorem can be

avoided.

The black strings are intrinsically “quantum” object.

∗ based on arXiv:2501.05678 [hep-th]
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Motivation
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Motivation

• Many charged objects should be contained in QG theory in order to be coupled with the

gravity in the consistent way.

• However, we do not know the full QG theory. The possible and reasonable argument is

that we impose this conjecture on effective theories.

• This kind of argument predicts Z2 charged string-like objects in SM.
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The horizon supported by Casimir energy
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How is a black string horizon supported ?

It is known that only spherical topology is allowed as horizon topology in 4D theory at least

classically.

Then, how we can construct a black string solution as vacuum solution . . . ?

Actually, this theorem is valid under dominant energy condition.

The quantum collection for vacuum, Casimir energy, can violate the dominant energy

condition !
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Casimir energy

Casimir energy associated the S1 surrounding the string is below.

VCasimir = −
∑

particle

(−1)2spnp

m4
p

2π2

∞∑
n=1

cos(2πnθp)

(2πRmpn)2
K2(2πRmpn)

θp : corresponds to the boundary condition of the particle

when going around the string.

Fermions have periodic boundary condition (θp = 0)

instead of anti-periodic, because this BS is Z2 charged.

(corresponding flipping the sign of the fermion fields)
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What we have to do

Rmp ≪ 1 ⇒ VCasimir ∼ (−1)2sp cos(2πθp)
1

(Rmp)4
.

Rmp ≫ 1 ⇒ K2(Rmp) exponentially dump ⇒ VCasimir also dump.

In our low energy case, only light particles are dominant −→ graviton, photon, neutrino

assumption : neutrinos are Majorana / Normal hierarchy / lightest mass is 0 (m3 = 0.05[eV])

What we have to do is . . .

Solving Einstein eq. with Casimir energy-momentum tensor with appropriate metric ansatz

and boundarty conditions.
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Metric ansatz and boundary conditions
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Extremal ansatz

The simplest string-like metric ansatz is

ds2 = A2(z)(−dt2 + dx2) +

(
MP

m2
3

)2

dz2 +R(z)2dϕ2.

z : parametrize the radial direction (proper distance). R is now a function of z.

How about the boundary condition ?

Actually, the good candidate for such solution was suggested by Arkani-Hamed et. al. in

2007 (but they didn’t construct it specifically).

They asserted that the extremal charged black string interpolate 4D vacua.
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Reissner-Nordstrom BH interpolating 4D vacua (review)

Recall the extremal Reissner-Nordstrom BH : an exact solutoion of Einstein-Maxwell theory.

This BH interpolates between AdS2 × S2 and M4.

What is the AdS2 × S2 ?

−→ The vacuum solution of KK compactified

2-dim effective theroy :

g(4)µν
decomposed−−−−−−−→ g

(2)
ij , χ (area of S2, moduli)

Its moduli is stabilized by electric flux.
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The black string interpolating 4D vacua (review)

They expected the same thing is true for extremal Z2 charged black string.

classical potential

Casimir of massless bosons

Casimir of neutrino

0 1 2 3 4 5

R m3
1

V
3
m
3
3

We consider 1-dim compactified 4d SM

: the spacetime is N3 × S1.

S =

∫
d4x

√
−g(4)

(
1

2
M2

PR(4) − Λ(4) − VCasimir(R) . . .

)
.

g(4)µν
decomposed−−−−−−−→ g

(3)
ij , R (radius of S1, moduli).

Actually the Casimir energy (periodic neutrinos) in the

action works as the radion potential.

In this case, N3 = AdS3.
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Boundary conditions for extremal BS

Expected boundary conditions :

• AdS3 × S1 near horizon

• M4 at infinity.

infinite throat region of extremal

RN-BH

⇔ the horizon is put at z = −∞

Hayate Kimura (SOKENDAI) KEK-PH2025 13 / 19



Motivation The horizon supported by Casimir Metric ansatz and BC Numerical results Conclusion

Numerical Results
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Extremal solution : R
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ds2 = A2(z)(−dt2 + dx2) +

(
MP

m2
3

)2

dz2 +R(z)2dϕ2.

• z → −∞ (horizon) : R → Rext
0 (S1).

• z → ∞ (infinity) : R ∼ (MP /m
2
3)z/

√
a (flat).

Especially,

1√
a
= O(10−2)× m3

MP

This means the deficit angle θ = 2π(1− 1/
√
a) is

θ ∼ O(1).
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Extremal solution : A
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ds2 = A2(z)(−dt2 + dx2) +

(
MP

m2
3

)2

dz2 +R(z)2dϕ2.

• z → −∞ (horizon)

: A ∼ e(MP /m2
3)z/lAdS (AdS3) → 0.

where

lAdS = 6.2× 10−3 × MP

m2
3

• z → ∞ (infinity) : A → const (flat).
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Conclusion

• The cobordism conjecture predicts a Z2 charged string-like object in 4D SM.

• We could actually construct this object as the “quantum” black string in SM.
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Future direction

• checking the stability of the string

• cosmological construction ?

• E8 × E8 heterotic SUGRA
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