Motivation O	The horizon supported by Casimir	Metric ansatz and BC 00000	Numerical results	Conclusion 000

Black String in the Standard Model

Yu Hamada¹, Yuta Hamada^{2,3}, Hayate Kimura³

¹DESY, ²KEK, ³SOKENDAI

KEK-PH2025, Feb.19, 2025

Motivation	The horizon supported by Casimir	Metric ansatz and BC	Numerical results	Conclusion
O		00000	000	000
Short summa	ary			

Our work is ...

constructing black string solutions in the SM numerically.

Its existence is predicted by the swampland conjecture.

There is a no-go theorem prohibiting the existence of black strings in 4d theory ...

 \rightarrow by considering Casimir energy in energy-momentum tensor, the no-go theorem can be avoided.

The black strings are intrinsically "quantum" object.

* based on arXiv:2501.05678 [hep-th]

Motivation O	The horizon supported by Casimir	Metric ansatz and BC 00000	Numerical results 000	Conclusion 000

Motivation

Motivation	The horizon supported by Casimir	Metric ansatz and BC 00000	Numerical results	Conclusion
Motivation				

- Many charged objects should be contained in QG theory in order to be coupled with the gravity in the consistent way.
- However, we do not know the full QG theory. The possible and reasonable argument is that we impose this conjecture on effective theories.
- This kind of argument predicts \mathbb{Z}_2 charged string-like objects in SM.

Motivation	The horizon supported by Casimir	Metric ansatz and BC	Numerical results	Conclusion
O	●000	00000	000	000

The horizon supported by Casimir energy

How is a black string horizon supported ?

It is known that only spherical topology is allowed as horizon topology in 4D theory at least classically.

Then, how we can construct a black string solution as vacuum solution ...?

Actually, this theorem is valid under dominant energy condition.

The quantum collection for vacuum, Casimir energy, can violate the dominant energy condition !

Motivation	The horizon supported by Casimir	Metric ansatz and BC	Numerical results	Conclusion
O		00000	000	000
Casimir energ	σν			

Casimir energy associated the S_1 surrounding the string is below.

$$V_{\text{Casimir}} = -\sum_{\text{particle}} (-1)^{2s_p} n_p \frac{m_p^4}{2\pi^2} \sum_{n=1}^{\infty} \frac{\cos(2\pi n\theta_p)}{(2\pi R m_p n)^2} K_2(2\pi R m_p n)$$

 θ_p : corresponds to the boundary condition of the particle when going around the string.

Fermions have periodic boundary condition $(\theta_p = 0)$ instead of anti-periodic, because this BS is \mathbb{Z}_2 charged. (corresponding flipping the sign of the fermion fields)

Motivation	The horizon supported by Casimir	Metric ansatz and BC	Numerical results	Conclusion
O	○○○●	00000		000
M/hat wa	have to do			

$$Rm_p \ll 1 \Rightarrow V_{\text{Casimir}} \sim (-1)^{2s_p} \cos(2\pi\theta_p) \frac{1}{(Rm_p)^4}.$$

 $Rm_p \gg 1 \Rightarrow K_2(Rm_p)$ exponentially dump $\Rightarrow V_{\mathsf{Casimir}}$ also dump.

In our low energy case, only light particles are dominant \rightarrow graviton, photon, neutrino assumption : neutrinos are Majorana / Normal hierarchy / lightest mass is 0 ($m_3 = 0.05$ [eV])

What we have to do is ...

Solving Einstein eq. with Casimir energy-momentum tensor with appropriate metric ansatz and boundarty conditions.

Motivation	The horizon supported by Casimir	Metric ansatz and BC	Numerical results	Conclusion
O	0000	•0000		000

Metric ansatz and boundary conditions

Motivation O	The horizon supported by Casimir	Metric ansatz and BC 0●000	Numerical results	Conclusion

Extremal ansatz

The simplest string-like metric ansatz is

$$ds^{2} = A^{2}(z)(-dt^{2} + dx^{2}) + \left(\frac{M_{P}}{m_{3}^{2}}\right)^{2} dz^{2} + R(z)^{2} d\phi^{2}.$$

z : parametrize the radial direction (proper distance). R is now a function of z.

How about the boundary condition ?

Actually, the good candidate for such solution was suggested by Arkani-Hamed et. al. in 2007 (but they didn't construct it specifically).

They asserted that the extremal charged black string interpolate 4D vacua.

Reissner-Nordstrom BH interpolating 4D vacua (review)

Recall the extremal Reissner-Nordstrom BH : an exact solutoion of Einstein-Maxwell theory.

This BH interpolates between $AdS_2\times S^2$ and $M_4.$ What is the $AdS_2\times S^2$?

 \longrightarrow The vacuum solution of KK compactified 2-dim effective therov :

 $g^{(4)}_{\mu\nu} \xrightarrow{\text{decomposed}} g^{(2)}_{ij}, \; \chi \; (\text{area of } S^2\text{, moduli})$

Its moduli is stabilized by electric flux.

Metric ansatz and BC

Conclusion

The black string interpolating 4D vacua (review)

They expected the same thing is true for extremal \mathbb{Z}_2 charged black string.

We consider 1-dim compactified 4d SM

: the spacetime is $N_3 \times S^1$.

$$\begin{split} S &= \int d^4x \sqrt{-g^{(4)}} \left(\frac{1}{2} M_P^2 \mathcal{R}^{(4)} - \Lambda^{(4)} - V_{\mathsf{Casimir}}(R) \dots \right) \\ g^{(4)}_{\mu\nu} &\xrightarrow{\mathsf{decomposed}} g^{(3)}_{ij}, \ R \ (\mathsf{radius of} \ S^1, \ \mathsf{moduli}). \end{split}$$

Actually the Casimir energy (periodic neutrinos) in the action works as the radion potential.

In this case, $N_3 = AdS_3$.

Boundary conditions for extremal BS

$$ds^{2} = A^{2}(z)(-dt^{2} + dx^{2}) + \left(\frac{M_{P}}{m_{3}^{2}}\right)^{2} dz^{2} + R^{2}(z)d\phi^{2}$$

$$z \to -\infty$$

$$\begin{cases} R(-\infty) = R_{0}^{\text{ext}} \\ A(-\infty) \sim e^{(M_{P}/m_{3}^{2})z/l_{\text{AdS}}} \to 0 \\ \vdots \text{ horizon, } AdS_{3} \times S^{1} \end{cases}$$

$$z \to \infty$$

$$R = 0: \text{ conical singularity } : \text{ infinite distance, } M_{4}$$

Expected boundary conditions :

- $AdS_3 \times S^1$ near horizon
- M_4 at infinity.

infinite throat region of extremal RN-BH

 \Leftrightarrow the horizon is put at $z=-\infty$

Motivation	The horizon supported by Casimir	Metric ansatz and BC	Numerical results	Conclusion
O	0000	00000	•00	000

Numerical Results

$$ds^{2} = A^{2}(z)(-dt^{2} + dx^{2}) + \left(\frac{M_{P}}{m_{3}^{2}}\right)^{2} dz^{2} + R(z)^{2} d\phi^{2}.$$

0

•
$$z \to -\infty$$
 (horizon) : $R \to R_0^{\mathsf{ext}}$ (S^1).

•
$$z
ightarrow\infty$$
 (infinity) : $R\sim (M_P/m_3^2)z/\sqrt{a}$ (flat).

Especially,

$$\frac{1}{\sqrt{a}} = \mathcal{O}(10^{-2}) \times \frac{m_3}{M_P}$$

This means the deficit angle $\theta = 2\pi(1 - 1/\sqrt{a})$ is $\theta \sim \mathcal{O}(1).$

Hayate Kimura (SOKENDAI)

Motivation 0	The horizon supported by Casimir 0000	Metric ansatz and BC 00000	Numerical results	Conclusion

Extremal solution : A

$$ds^{2} = A^{2}(z)(-dt^{2} + dx^{2}) + \left(\frac{M_{P}}{m_{3}^{2}}\right)^{2} dz^{2} + R(z)^{2} d\phi^{2}.$$

$$z \to -\infty$$
 (horizon)
: $A \sim e^{(M_P/m_3^2)z/l_{\mathsf{AdS}}}$ $(AdS_3) \to 0.$

where

$$l_{\rm AdS} = 6.2 \times 10^{-3} \times \frac{M_P}{m_3^2}$$

$$z \to \infty$$
 (infinity) : $A \to \text{const}$ (flat).

Motivation	The horizon supported by Casimir	Metric ansatz and BC	Numerical results	Conclusion
O		00000	000	●○○

Motivation O	The horizon supported by Casimir	Metric ansatz and BC 00000	Numerical results	Conclusion ○●○
Conclusion				

- The cobordism conjecture predicts a \mathbb{Z}_2 charged string-like object in 4D SM.
- We could actually construct this object as the "quantum" black string in SM.

Motivation	The horizon supported by Casimir	Metric ansatz and BC	Numerical results	Conclusion
O		00000	000	○○●
Future direct	ion			

- checking the stability of the string
- cosmological construction ?
- $E_8 \times E_8$ heterotic SUGRA