Minimal dark matter in SU(5) grand unification

Takashi Toma (Kanazawa U.)

KEK-PH @ KEK 19th Feb. 2025

Based on arXiv: 2412.19660 [hep-ph]

Introduction

Minimal dark matter

M. Cirelli et al., Nucl.Phys.B (2005) [hep-ph/0512090] Farina et al., JHEP (2013) [arxiv:1303.7244]

Quantum numbers			DM could	DM mass	$m_{\rm DM^{\pm}} - m_{\rm DM}$	$\sigma_{ m SI}$ in
$\mathrm{SU}(2)_L$	$\mathrm{U}(1)_Y$	Spin	decay into	in TeV	in MeV	$10^{-46} {\rm cm}^2$
5	0	1/2	stable	$4.4 \rightarrow 14$	166	1.0 ± 0.2
7	0	0	stable	$8 \rightarrow 25$	166	4 ± 1

• Lagrangian:
$$\mathcal{L} = \frac{1}{2} \overline{\chi} \left(i D - M_5 \right) \chi$$
 or $\mathcal{L} = \frac{1}{2} \left(D_\mu \chi \right)^* \left(D^\mu \chi \right) - \frac{1}{2} M_7 \chi^2$

- No other interactions $\Rightarrow \chi^0$ is stabilized (Thermal relic via by $\chi\chi \rightarrow$ gauge bosons, mass $M_5 \sim 14 \text{ TeV}$)
- Sommerfeld enhancement and bound state formation

Motivation

Fermionic MDM can achieve gauge coupling unification?

- Big change of the running at $\mu = M_5$ \Rightarrow need to add colored fields with non-zero Y, but singlet for $SU(2)_L$.
- Assumptions (Requirements)
 - No additional scale other than $\mathcal{O}(10)$ TeV
 - No Landau pole up to Planck scale
 - Extra fields have to be embedded in SU(5).
 ⇒ possible reps. are limited. 5-plet ⊂ 200

MDM in SU(5)

$$200 = (6,3)_{-5/3} + (15,2)_{-5/6} + (3,4)_{-5/6} + (3,2)_{-5/6} + (27,1)_0 + (8,3)_0 + (8,1)_0 + (1,5)_0 + (1,3)_0 + (1,1)_0 + (\overline{6},3)_{5/3} + (\overline{15},2)_{5/6} + (\overline{3},4)_{5/6} + (\overline{3},2)_{5/6}$$

- Only $(\mathbf{1}, \mathbf{5})_0$ is light.
- Other states cannot be light.

Otherwise Landau pole for g_2 appears below Planck scale.

Rough estimate at one-loop level (> 10000 pages)

 \blacksquare β functions:

$$\frac{dg_i}{dt} = \frac{b_i g_i^3}{(4\pi)^2} \text{ where } b_1 = \frac{41}{10}, \ b_2 = -\frac{19}{6}, \ b_3 = -7 \text{ in SM}$$

and $\Delta b_2 = \frac{20}{3}$ from 5-plet MDM
Requirement for gauge coupling unification ($q_1 = q_2 = q_3$ and $q_3 = -7$).

Requirement for gauge coupling unification $(g_1 = g_2 = g_3 \text{ at } \mu = M_U)$, $\Rightarrow -2.9 \leq \Delta b_1 - \Delta b_3 \leq -1.6$ (additional contribution)

■ Look for possible states $(\mathbf{3}, \mathbf{1})_{-1/3}, \ (\overline{\mathbf{3}}, \mathbf{1})_{1/3} \subset \mathbf{5}, \overline{\mathbf{5}}, \qquad (\overline{\mathbf{3}}, \mathbf{1})_{-2/3}, \ (\mathbf{3}, \mathbf{1})_{2/3} \subset \mathbf{10}, \overline{\mathbf{10}}, \\ (\mathbf{6}, \mathbf{1})_{-2/3}, \ (\overline{\mathbf{6}}, \mathbf{1})_{2/3} \subset \mathbf{15}, \overline{\mathbf{15}}, \qquad \cdots$ If two pairs of $(\mathbf{6}, \mathbf{1})_{-2/3}, \ (\overline{\mathbf{6}}, \mathbf{1})_{2/3} = -2.4 \iff \mathsf{added}$ $\Rightarrow \Delta b_1 - \Delta b_3 = -\frac{12}{5} = -2.4 \iff \mathsf{likely to work}$

Two-loop calculation

Gauge coupling unification

Unification scale M_U is close to the reduced Planck scale M_P
 No proton decay, \(\tau_p \ge > 10^{39}\)yrs \(\simes \tau_{exp} = 10^{34}\)yrs

Takashi Toma (Kanazawa U.)

Gauge coupling unification 2

Define criterion of unification (complete unification if \Delta = 0) \Delta(\mu) \equiv \sqrt{\Delta\alpha_{12}^{-2}(\mu) + \Delta\alpha_{23}^{-2}(\mu)}, \Delta\alpha_{ij} = \alpha_i^{-1} - \alpha_j^{-1}

1.6 TeV \le M_6, \tilde{M}_6 \le 20 TeV

Mass splitting

$$\mathcal{L} = -\frac{M_{200}}{2} \mathbf{200}_F \mathbf{200}_F + \frac{Y_{200}}{2} \mathbf{24}_H \mathbf{200}_F \mathbf{200}_F$$
5-plet:

$$M_{200} - Y_{200} \langle \mathbf{24}_H \rangle = 14 \text{ TeV}$$

Other states:

$$M_{200} - C_i Y_{200} \langle \mathbf{24}_H \rangle \sim M_U$$

Same for $(15, \overline{15})$ pairs.

Dimopoulos-Wilczek mech. \rightarrow no fine-tuning? $(\mathbf{1}, \mathbf{5})_0 \subset \mathbf{2640}$ in SO(10)

	C_i		
24_{H}	200_F	200_F	
$(1,1)_0$	$({f 6},{f 3})_{-5/3}$	$(\overline{f 6},{f 3})_{5/3}$	1/6
$(1,1)_0$	$({f 15},{f 2})_{-5/6}$	$(\overline{f 15},{f 2})_{5/6}$	1/4
$(1,1)_0$	$({f 3},{f 4})_{-5/6}$	$(\overline{f 3},{f 4})_{5/6}$	-7/12
$(1,1)_0$	$({f 3},{f 2})_{-5/6}$	$(\overline{f 3},{f 2})_{5/6}$	-19/84
$(1,1)_0$	$({f 27},{f 1})_0$	$({f 27},{f 1})_0$	2/3
$(1,1)_0$	$({f 8},{f 3})_0$	$({f 8},{f 3})_0$	1/6
$(1,1)_0$	$({f 8},{f 1})_0$	$({f 8},{f 1})_0$	1/14
$(1,1)_0$	$({f 1},{f 5})_0$	$(1,5)_0$	1
$(1,1)_0$	$(1,3)_0$	$(1,3)_0$	11/21
$(1,1)_0$	$(1,1)_0$	$(1,1)_0$	-2/7
$(1,1)_0$	$(\overline{f 3},{f 2})_{5/6}$	$({f 3},{f 2})_{-5/6}$	-19/84
$(1,1)_0$	$(\overline{f 3},{f 4})_{5/6}$	$({f 3},{f 4})_{-5/6}$	-7/12
$(1,1)_0$	$(\overline{f 15},{f 2})_{5/6}$	$({f 15},{f 2})_{-5/6}$	1/4
$(1,1)_0$	$(\overline{f 6},{f 3})_{5/3}$	$({f 6},{f 3})_{-5/3}$	1/6

Exotic colored fermion search

Carpenter et al., arXiv:2110.11359, ATLAS Coll., arXiv: 1606.05129

•
$$\Psi = ({\bf 6}, {\bf 1})_{-2/3}$$
, $\overline{\Psi} = (\overline{{\bf 6}}, {\bf 1})_{2/3}$

Metastable sextet production at LHC

- Mass bound is 1.6 TeV for metastable gluino.
- R-hadrons are produced (bound state of Ψ , $\overline{\Psi}$ and quarks)
- Detectable via large ionization losses and slow propagation velocities

Gamma-ray search Lefranc et al., arXiv:1608.00786, CTA Collaboration, arXiv:2007.16129

- CTA prospect (expected to start in 2026)
 Energy range: 20 GeV 300 TeV
- Line (left) and continuum (right)

Implication to string theory

- String endpoints correspond to fundamental indices of gauge groups. Ex. symmetric $ij \Rightarrow$ adjoint
- Maximally three indices even if strongly coupled strings are considered.

Open Strings

M. Baumgart et al., arXiv: 2412.13192

Strongly Coupled Bound States

- Any examples with four indices are not known so far, and such construction seems to be difficult.
- Isolation of high dimensional reps is also difficult.
 - \Rightarrow Once 5-plet MDM with exotic colored fermions is experimentally confirmed, most of known string theories have to be falsified.

Summary

- **1** 5-plet MDM is phenomenologically promising DM candidate. The mass = 14 TeV.
- The model can accommodate gauge coupling unification at the reduced Planck scale by adding 2 pairs of SU(3)_c 6-plet fermions.
- **3** The model can be tested via searching for the exotic 6-plet fermions at TeV scale, and MDM through gamma-ray observation.
- If the isolated MDM is found by experiments, most of known string theories are excluded, and need to be modified.

Backup

Backup

Thermal dark matter

Thermalized with SM particles in early universe.

To get $\Omega_{\chi}h^2 = 0.12$, roughly $\sigma \sim 1 \text{pb} \sim 10^{-26} \text{cm}^3/\text{s} \sim 10^{-36} \text{cm}^2$ (only log dependent on DM mass) Backup

Status of direct detection experiments

