Thermal leptogenesis in $SO(10) \times U(1)$ GUT (on going work)

SHIBATA Kei, N.MAEKAWA, M.YAMANAKA

Nagoya univ. E-lab D1

February 20, 2025

- There are some problems in SM.
 - Baryon asymmetry
 - left-handed neutrino mass
 - Dark matter
 - ▶ strong CP etc...
- We focused on Right-Handed Neutrino (RHN) that can explain two problems.
 - leptogenesis \rightarrow baryon asymmetry
 - \blacktriangleright seesaw mechanism \rightarrow left-handed neutrino mass
- I thought it would be nice if there is a theory that could introduce RHNs naturally...
 - SO(10)Grand Unified Theory is a candidate of it.

- **2** $SO(10) \times U(1)_A$ Grand Unified Theory
- **3** Thermal Leptogenesis
- 4 thermal leptogenesis in $SO(10) \times U(1)_A \text{GUT}$
- **5** conclusion

2 $SO(10) \times U(1)_A$ Grand Unified Theory

3 Thermal Leptogenesis

(4) thermal leptogenesis in $SO(10) \times U(1)_A \text{GUT}$

SO(10) Grand Unified Theory(GUT)

- advantage of $SO(10) {\rm GUT}$
 - Unify SM particles+ RHN N_i

$$\Psi_{16} = \mathsf{SM}_{10,\overline{5}} + \mathsf{RHN}_{1} \tag{1}$$

- some problems in $SO(10) {\rm GUT}$
 - doublet-triplet splitting problem
 - GUT relation

$$Y_{ij}\Psi_i\Psi_jH \quad \to \quad Y = Y_u = Y_d = Y_e^T = Y_\nu \tag{2}$$

• We need a theory that addresses these problems!

$SO(10) \times U(1)_A \text{GUT}$

- Two methods are used to avoid these problems.
 - Adding new field Θ C.D.Frogatt, H.B.Nielsen (1979)

★
$$U(1)_A$$
 charge: $\theta = -1$

***** VEV:
$$\langle \Theta \rangle = \lambda \Lambda$$
 ($\lambda \sim 0.22$)

$$\left(\frac{\Theta}{\Lambda}\right)^{\psi_i + \psi_j + h} \Psi_i \Psi_j H \quad \to Y_{ij} \sim \lambda^{\psi_i + \psi_j + h}$$

- field $T_{10} \rightarrow$ Yukawa matrix consistent with experiment.
- $SO(10) \times U(1)_A \text{GUT}$ is consistent with experiment.
 - determin the neutrino yukawa Y_{ν} and the RHN mass M_i^0

$$Y_{\nu} = \begin{pmatrix} \lambda^{6} & \lambda^{5.5} & \lambda^{5} \\ \lambda^{5} & \lambda^{4.5} & \lambda^{4} \\ \lambda^{3} & \lambda^{2.5} & \lambda^{2} \end{pmatrix}, \quad M_{i}^{0} = \Lambda_{G} \mathsf{diag}(\lambda^{12}, \lambda^{10}, \lambda^{6})$$
(4)

(3)

The M_i enhancement

• RHN Majorana mass term $(M_i^0 \text{ term})$

$$\lambda^{2\psi_i+2\overline{c}}rac{1}{\Lambda}\Psi_i\Psi_i\overline{CC}$$

another term

$$\lambda^{2\psi_i + 2\overline{c} + a} \frac{1}{\Lambda} \Psi_i \Psi_i \overline{CC} A \tag{6}$$

- Because $\langle A
 angle = \Lambda \lambda^{-a}$, these give the same contribution
 - enhancement to $M_i^0 \rightarrow c_1 * M_i^0 =: M_i$

$$\lambda^{2\psi_i+2\overline{c}+a}\frac{1}{\Lambda}\Psi_i\Psi_i\overline{CC}\langle A\rangle = \lambda^{2\psi_i+2\overline{c}}\frac{1}{\Lambda}\Psi_i\Psi_i\overline{CC}$$

(5)

(7)

2 $SO(10) \times U(1)_A$ Grand Unified Theory

3 Thermal Leptogenesis

4 thermal leptogenesis in $SO(10) \times U(1)_A \text{GUT}$

Thermal leptogenesis

(

- a kind of mechanisms to explain baryon asymmetryM.Fukugita, T.Yanagida (1986)
 - Thermalizing right-handed neutrinos produce lepton numbers
 - Convert lepton number to baryon number (sphaleron process)F.R.Klinkhamer, N.S. Manton,(1984)
- CP asymmetriy: $\epsilon \rightarrow$ lepton number $\propto \epsilon_1$

$$\epsilon_{i} := \frac{\Gamma(N_{i} \to \ell + H) - \Gamma(N_{i} \to \overline{\ell} + H^{\dagger})}{\Gamma(N_{i} \to \ell + H) + \Gamma(N_{i} \to \overline{\ell} + H^{\dagger})} \simeq -\frac{1}{8\pi} \frac{1}{(Y_{\nu}Y_{\nu}^{\dagger})_{ii}} \sum_{j \neq i} \operatorname{Im}\left[(Y_{\nu}Y_{\nu}^{\dagger})_{ij}^{2}\right] f\left(\frac{M_{j}^{2}}{M_{i}^{2}}\right)$$

$$\tag{8}$$

- decay parameter: $K{\rightarrow}$ lepton number is maximized at $K{\,\sim}1$
 - ▶ $1 \ll K \leftrightarrow \text{strong wash-out}, \qquad 1 \gg K \leftrightarrow \text{weak wash-out}$

$$K_{i} := \frac{\Gamma_{N_{i}}(T=0)}{H(T=M_{i})} \simeq \sqrt{\frac{45}{4\pi^{3}g_{*}}} \frac{\left(Y_{\nu}Y_{\nu}^{\dagger}\right)_{ii}}{8\pi} \frac{M_{pl}}{M_{i}}$$
(9)

the relationship Y_{B-L} between M_1

- ϵ_1 and K_1 depend on M_1
 - the lepton number depends on M_1
 - M_i is determined from consistency with cosmic observations

Fig 1: c_1 dependence of Y_{B-L}

Fig 2: M_1 and Y_{B-L} consistent with observations

- **2** $SO(10) \times U(1)_A$ Grand Unified Theory
- **3** Thermal Leptogenesis
- 4 thermal leptogenesis in $SO(10) \times U(1)_A \text{GUT}$

Results of this study

we worked on in this study

The first consideration of thermal leptogenesis in $SO(10) \times U(1)_A GUT$.

Main Results

Result 1 Presenting the possibility of thermal leptogenesis in SUSY SO(10) GUT.

Result 2 Calculating the contribution of N_2

- There is some bound to the M_1 .
 - lower bound to M_1 (Ibarra bound) S.Davidson, A.Ibarra (2002)
 - neutrino seesaw + $\sum m_{\nu}$

$$m_{\nu} = v_u^2 Y_{\nu}^T M^{-1} Y_{\nu} \tag{10}$$

- We need to avoid these bounds.
 - In minmal SO(10), it is difficult to avoid this.
 - ▶ non-thermal leptogenesis can avoid these bounds.Asaka. T (2003)等
- $SO(10) \times U(1)_A GUT$ can avoid these bound
 - ▶ This presents the possibility of thermal leptogenesis in SO(10)GUT.

- flavor leptogenesis
 - Temperatures reaching thermal equilibrium vary from each flavor.
 - Consider the lepton doublet flavor.

$$\epsilon_{\alpha i} = \frac{\Gamma(N_i \to L_{\alpha} + H) - \Gamma(N_i \to \overline{L}_{\alpha} + H^{\dagger})}{\Gamma(N_i \to L_{\alpha} + H) + \Gamma(N_i \to \overline{L}_{\alpha} + H^{\dagger})}$$
$$\simeq -\frac{1}{8\pi} \frac{1}{(Y_{\nu} Y_{\nu}^{\dagger})_{ii}} \sum_{j \neq i} \operatorname{Im} \left[Y_{\nu \alpha i} Y_{\nu \alpha j}^* (Y_{\nu} Y_{\nu}^{\dagger})_{ij} \right] f(M_j^2/M_i^2) \tag{11}$$
$$K_{\alpha i} \simeq \sqrt{\frac{45}{4\pi^3 g_*}} \frac{|Y_{\nu \alpha i}|^2}{8\pi} \frac{M_{pl}}{M_i} \tag{12}$$

Comparing flavor leptogenesis with non-flavor leptogenesis

non-flavor: all flavor have same $K_1 \sim 50$ strong wash-out \rightarrow no N_2 contribution

flavor:
$$K_{1e} \sim 2, K_{1\mu} \sim 9, K_{1\tau} \sim 40$$

 $\rightarrow N_2$ contribution appears

• This contribution cannot be negligible in this model.

- c_1 dependence of lepton number
- lepton number of N_2 remain in electron flavor
 - weak wash-out in *e* flavor strong wash-out in μ, τ flavor
- For larger c_1 , lepton number of $N_1 + N_2$ are strong washed-out.

(

• M_1 consistent with cosmological observations.

$$c_1 := \frac{M_1}{M_1^0} \simeq 7.1(N_1 \text{ only}) \to 5.4(N_1 + N_2)$$
 (13)

• Estimating the mass of the lightest left-handed neutrino from the seesaw mechanism.

$$m_{\nu} = v_u^2 Y_{\nu}^T M^{-1} Y_{\nu}$$

 $m_1 \sim m_1^0 / c_1$

conclusion

- First consideration of thermal leptogenesis in $SO(10) \times U(1) \text{GUT}$
 - Presenting the possibility of thermal leptogenesis in SO(10)GUT.
 - ▶ Clarification of the contribution of N₂ in flavor leptogenesis.
 - Estimating the mass of lightest left-handed neutrinos through seesaw mechanisms.
 - ***** It is suppressed. $(1/c_1 \sim 0.19)$

Comments and Future work

- O(1) coefficients exist
 - Lepton number varies with O(1) coefficient.
- We will examine the contribution of N_3 .
 - We estimate the contribution to be small.
 - Other calculation methods are needed to deal with different equilibrium states.

