# Constraints on Trilinear Higgs Couplings Including One-loop Correction in Nearly Aligned Higgs Models

Work in progress

#### Shuhei Ohzawa (U. of Toyama)

Collaborators: Mitsuru Kakizaki<sup>A</sup>, Nagisa Hiroshima<sup>B, C</sup>

KEK-PH2025winter, KEK

February 20, 2025

<sup>A</sup>U. of Toyama

<sup>B</sup>Yokohama National U.

<sup>C</sup>RIKEN iTHEMS



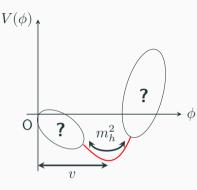
### Introduction

- The Standard Model (SM): Well-established at the scale  $\Lambda < \mathcal{O}(1) \, {\rm TeV}$
- Phenomenological Problems:

Phenomena beyond the SM.

E.g. Baryon Asymmetry of the Universe, Existence of Dark Matter, etc.

#### Theoretical Problems:


The structure of the Higgs sector is still unknown.

E.g. No guiding principle --- elementary or composite? multiple spices?

#### The extended Higgs sector can explain phenomena beyond the SM.

How precise can we distinguish the extended Higgs model through the trilinear Higgs coupling?

# **Higgs Potential**



Vacuum Expectation Value (VEV):  $0 = \frac{\partial V}{\partial \phi}\Big|_{\phi=v}$ Observation: v = 246 GeV

[S. Navas et al. (Particle Data Group), 2024]

Square of the mass of the Higgs boson:  $m_h^2 = \frac{\partial^2 V}{\partial \phi^2}\Big|_{\phi=i}$ Observation:  $m_h = 125.11 \pm 0.11 \,\text{GeV}$ [ATLAS Collaboration, 2023]

 $V(\phi)$ : Higgs potential  $\phi$ : classical field

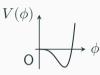
Trilinear Higgs Coupling:  $\lambda_{hhh} = \left. \frac{\partial^3 V}{\partial \phi^3} \right|_{\phi=v}$ 

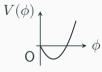
Ratio of the trilinear Higgs coupling:  $\kappa_{\lambda} := \frac{\lambda_{hhh}}{\lambda_{hhh}^{SM}}$ 

 $\lambda_{hhh}$  is important for determining the global shape of the Higgs potential.

# Shapes of the Higgs Potential

Samples in this talk: 4 types of Higgs potentials in nearly aligned Higgs models [P. Agrawal *et al.*, 2020]


Nearly aligned Higgs model: A good approximation with one classical field  $\phi$ 


Type 1: Standard Model

$$O^{V(\phi)} \longrightarrow \phi$$

Type 3: pseudo-Nambu-Goldstone

Type 2: Classical Scale Invariance





Current observation: [ATLAS Collaboration, 2024; CMS Collaboration, 2024]

- ATLAS ( $\sqrt{s} = 13 \text{ TeV}$ ,  $\mathcal{L} = 126 139 \text{ fb}^{-1}$ ):  $-0.4 < \kappa_{\lambda} < 6.3 \text{ at } 95\%$  C.L.
- CMS ( $\sqrt{s} = 13 \text{ TeV}, \ \mathcal{L} = 138 \text{ fb}^{-1}$ ):  $-1.2 < \kappa_{\lambda} < 7.5 \text{ at } 95\%$  C.L.

Future upgrade:

- High Luminosity LHC (HL-LHC) [ATLAS Collaboration, 2022; CMS Collaboration, 2021]
  - ATLAS ( $\sqrt{s} = 14 \text{ TeV}, \ \mathcal{L} = 3000 \text{ fb}^{-1}$ ):  $0.5 < \kappa_{\lambda} < 1.6 \text{ at } 68\% \text{ C.L.}$
  - CMS ( $\sqrt{s} = 14 \,\mathrm{TeV}, \ \mathcal{L} = 3000 \,\mathrm{fb}^{-1}$ ):  $0.35 < \kappa_{\lambda} < 1.9$  at 68% C.L.

Future experiments:

International Linear Collider (ILC) [ILC International Development Team, 2022]

$$\sqrt{s} = 1 \text{ TeV}, \ \mathcal{L} = 5 \text{ ab}^{-1}:$$

The measurement accuracy is about  $10\,\%$  for  $\kappa_{\lambda}=1$  at 68% C.L.

- 100 TeV pp Collider (FCC-hh and SppC) [B. Di Micco, M. Gouzevitch, J. Mazzitelli,
  C. Vernieri, J. Alison, K. Androsov, J. Baglio, E. Bagnaschi, S. Banerjee and P. Basler, *et al.*, 2020]
  - $\mathcal{L} = 30 \, \mathrm{ab}^{-1}$ :

The measurement accuracy is about 5 % for  $\kappa_{\lambda}=1$  at 68% C.L.

 Muon Collider [C. Accettura, D. Adams, R. Agarwal, C. Ahdida, C. Aimè, N. Amapane, D. Amorim, P. Andreetto, F. Anulli and R. Appleby, *et al.*, 2023]

• 
$$\sqrt{s} = 3 \text{ TeV}, \ \mathcal{L} = 2 \text{ ab}^{-1}$$
:  $0.85 < \kappa_{\lambda} < 1.16$  at  $68\%$  C.L.

## The loop contribution to $\lambda_{hhh}$

In the SM,

 $\left(\lambda_{hhh}^{\rm tree}=3m_h^2/v\right)$ 

$$\lambda_{hhh}^{1\text{-loop}} = \frac{3m_h^2}{v} \left(1 - \frac{1}{\pi^2} \frac{m_t^4}{v^2 m_h^2}\right) = \lambda_{hhh}^{\text{tree}} - \frac{3}{\pi^2} \frac{m_t^4}{v^3}$$

The top quark contribution gives about a 10% correction to  $\lambda_{hhh}$  in the SM.  $\rightarrow$ This contribution cannot be ignored at future collider experiments.

To scrutinize the shape of the Higgs potential in extended model, we need to consider 1-loop corrections.

# Standard Model Effective Field Theory (SMEFT)

Features [B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, 2010]

• New Physics effects can be treated in the framework of the SM gauge group.

Higgs potential at the 1-loop level:

$$V(\phi) = A\phi^{2} + B\phi^{4} + C\phi^{4}\ln\frac{\phi^{2}}{Q^{2}} + \frac{D}{\Lambda^{2}}\phi^{6} = V_{\rm SM}(\phi) + \frac{D}{\Lambda^{2}}\phi^{6}$$

where A, B, C, D are model-dependent parameters. Trilinear Higgs Coupling at the 1-loop level:

$$\lambda_{hhh}^{\text{SMEFT}} = \frac{3}{v} \left\{ m_h^2 + \frac{16}{3} \left( C + \frac{3Dv^2}{\Lambda^2} \right) v^2 \right\} = \lambda_{hhh}^{1-\text{loop}} + \frac{48Dv^3}{\Lambda^2}$$

# Classical Scale Invariance (CSI) Type

Features [E. Gildener and S. Weinberg, 1976; K. Hashino, S. Kanemura and Y. Orikasa, 2016]

- Scale invariance is assumed.
- Spontaneous symmetry breaking is caused by radiative corrections.
- New scalar particles are introduced.

Higgs potential at the 1-loop level:

$$V(\phi) = A\phi^4 + B\phi^4 \ln \frac{\phi^2}{Q^2}$$

where Q is a renormalization scale.

Trilinear Higgs Coupling at the 1-loop level:

$$\lambda_{hhh}^{\rm CSI} = \frac{5}{3} \cdot \frac{3m_h^2}{v} = \frac{5}{3} \lambda_{hhh}^{\rm tree}$$

## pseudo-Nambu-Goldstone Boson (pNGB) Type 1

Features [D. B. Kaplan and H. Georgi, 1984; R. Contino, 2010]

- Global symmetry G is explicitly broken to the partial symmetry H.
- Identification of the pseudo-Nambu-Goldstone boson appearing in symmetry breaking  $G\to H$  as the Higgs boson.

Higgs potential at the 1-loop level when weak bosons contribution dominant:

$$V(\phi) = -A f^4 \sin^2\left(\frac{\phi}{f}\right) + B f^4 \sin^4\left(\frac{\phi}{f}\right)$$

where f is the broken scale at  $G \rightarrow H$ .

Trilinear Higgs Coupling at the 1-loop level:

$$\lambda_{hhh}^{\text{pNGB}} = \frac{3m_h^2}{v} \frac{1-2\xi}{\sqrt{1-\xi}} = \lambda_{hhh}^{\text{tree}} \frac{1-2\xi}{\sqrt{1-\xi}} \quad \left(\xi \coloneqq \frac{v^2}{f^2} = \sin^2 \frac{v}{f}\right)$$

### pseudo-Nambu-Goldstone Boson (pNGB) Type 2

Features [D. B. Kaplan and H. Georgi, 1984; R. Contino, 2010]

- Global symmetry G is explicitly broken to the partial symmetry H.
- The pNG boson is identified as the Higgs boson.

Higgs potential at the 1-loop level when weak bosons and top quark contribution dominant:

$$V(\phi) = A f^4 \cos\left(\frac{\phi}{f}\right) - B \sin^2\left(\frac{\phi}{f}\right) + C f^4 \sin^4\left(\frac{\phi}{f}\right)$$

where f is the broken scale at  $G \rightarrow H$ . Trilinear Higgs Coupling at the 1-loop leve

Trilinear Higgs Coupling at the 1-loop level:

$$\lambda_{hhh}^{\rm pNGB} = \frac{3m_h^2}{v}\sqrt{1-\xi}\left(1-\frac{8v^2}{m_h^2}C\xi\right) = \lambda_{hhh}^{\rm tree}\sqrt{1-\xi}\left(1-\frac{8v^2}{m_h^2}C\xi\right)$$

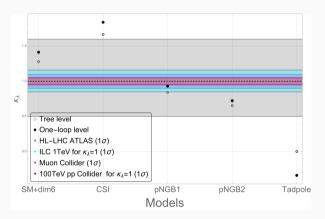
# Tadpole-induced (Tadpole) Type

Features [J. Galloway, M. A. Luty, Y. Tsai and Y. Zhao, 2014; S. Chang, J. Galloway, M. Luty,

#### E. Salvioni and Y. Tsai, 2015]

- An additional heavy scalar particle is introduced.
- Linear terms for the Higgs boson and additional scalar particle cause symmetry breaking.
- The quartic coupling  $\lambda$  of the Higgs doublet is negligible.

Higgs potential at the 1-loop level:

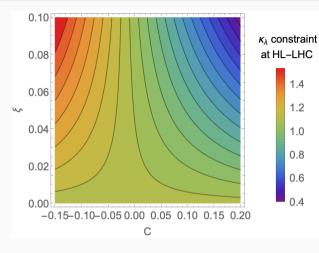

$$V(\phi)\simeq A\phi^2-B\phi+C\phi^4\ln\frac{\phi^2}{v^2}$$

where A and B are positive model-dependent parameters. Trilinear Higgs Coupling at the 1-loop level:

$$\lambda_{hhh}^{\rm tadpole} = -\frac{3}{\pi^2} \frac{m_t^4}{v^3}$$

#### **Results: Ratios of Trilinear Higgs Couplings**

Trilinear Higgs Couplings at the 1-loop level for each model expected at future colliders




for pNGB type 1 and type 2  $\xi = \sin^2(v/f) = 0.1,$  SMEFT  $D/\Lambda^2 = 10^{-6}$ 

Tree level:  $\lambda_{hhh}/\lambda_{hhh}^{\text{SM, tree}}$ One-loop level:  $\lambda_{hhh}/\lambda_{hhh}^{\text{SM, one-loop}}$ 

- The region of the ILC at 1 TeV (Cyan) is the accuracy at 1σ level for the SM value.
- The tadpole-induced model can be verifiable at the HL-LHC.
- At the ILC  $1\,{\rm TeV},$  the CSI model can be verifiable when  $\kappa_\lambda = 1_{\cdot 12/14}$

# Result: pNGB Type 2



1.4

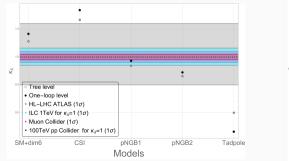
1.2

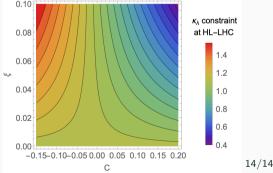
1.0

0.8

0.6 0.4

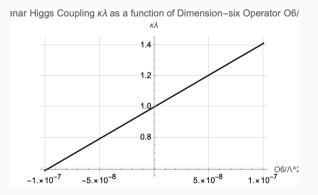
Contour plot of  $\kappa_{\lambda}^{\rm pNGB}$  in  $\xi$  and C


• The coefficient C of  $\sin^4(\phi/f)$ can be limited by the constraint of  $\kappa_{\chi}$  and  $\xi$ .


- We assume that C is the  $\mathcal{O}(1)$ parameter since the calculation of the effective potential can be perturbative.
  - The expected constraint of C at HI -I HC:

-0.15 < C < 0.2.

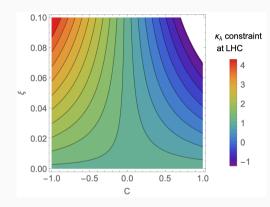
### Summary


- We have computed trilinear couplings including the 1-loop contribution in representative nearly aligned Higgs models.
- We classified nearly aligned Higgs models by trilinear Higgs coupling and explored the feasibility of this classification at future collider experiments.





# Backup


# **Result: SMEFT Type**



Preliminary Plot of  $\kappa_\lambda$  dependence on the coefficient  $D/\Lambda^2$  of the dimension-six operator

- The coefficient D/Λ<sup>2</sup> of dimension-six operator can be limited by the constraint of κ<sub>λ</sub>.
- The constraint at the HI-LHC:  $-1\times 10^{-7} < D^2/\Lambda^2 < 1\times 10^{-7}$

# Result: pNGB Type 2 at LHC and HI-LHC



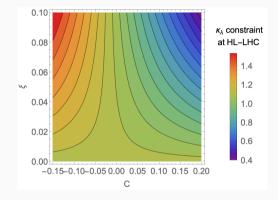
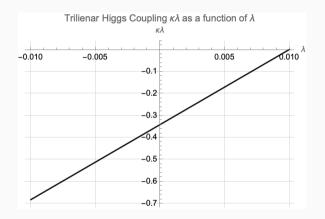




Figure 1: Contour plot of the ratio of trilinear Higgs coupling  $\kappa_{\lambda}^{\rm pNGB}$  allowed from LHC observations

Figure 2: Contour plot of the ratio of trilinear Higgs coupling  $\kappa_{\lambda}^{\rm pNGB}$  allowed from HL-LHC observations

# **Result: Tadpole Type**



Preliminary Plot of  $\kappa_{\lambda}$  dependence on the coefficient  $\lambda\,(\ll 1)$  of  $\phi^4$ 

- The coefficient λ of φ<sup>4</sup> can be limited by the constraint of κ<sub>λ</sub>.
- κ<sub>λ</sub><sup>Tadpole</sup> is only negative in the region of λ, which is sufficiently small compared to the tadpole coupling B.