# New Constraints on Gaguged U(1) $_{L_{\mu}-L_{\tau}}$ Model via Z-Z' Mixing

#### Coh Miyao

Kyushu University KEK-PH 2025 20th/Feb/25 Based on [10.1007/JHEP12(2024)]



Collaborators : K. Asai(ICRR), S. Okawa(KEK), K. Tsumura(Kyushu U.)

### Background

• The recent experiments of the neutrino oscillation become more precise.

 $\rightarrow$  The simple U(1)<sub>L<sub>µ</sub>-L<sub>τ</sub></sub> gauge models seem hard to describe the neutrino physics.

• The discrepancy of muon g-2 between the SM and experimental results exist.

 $\rightarrow$  U(1)<sub>L<sub>µ</sub>-L<sub>τ</sub> gauge models can explain.</sub>





Cited from https://www-sk.icrr.u-tokyo.ac.jp/sk/

#### Purpose

• To find what is the minimum  $U(1)_{L_{\mu}-L_{\tau}}$  gauge model based on the latest experimental results.

To study details of the model.

|          |                                                 | Normal Ordering (best fit)             |                               | Inverted Ordering $(\Delta \chi^2 = 6.4)$ |                               |
|----------|-------------------------------------------------|----------------------------------------|-------------------------------|-------------------------------------------|-------------------------------|
|          |                                                 | bfp $\pm 1\sigma$                      | $3\sigma$ range               | bfp $\pm 1\sigma$                         | $3\sigma$ range               |
| lata     | $\sin^2	heta_{12}$                              | $0.303\substack{+0.012\\-0.012}$       | $0.270 \rightarrow 0.341$     | $0.303\substack{+0.012\\-0.011}$          | $0.270 \rightarrow 0.341$     |
|          | $	heta_{12}/^{\circ}$                           | $33.41\substack{+0.75\\-0.72}$         | $31.31 \rightarrow 35.74$     | $33.41\substack{+0.75 \\ -0.72}$          | $31.31 \rightarrow 35.74$     |
| sric d   | $\sin^2	heta_{23}$                              | $0.451\substack{+0.019\\-0.016}$       | $0.408 \rightarrow 0.603$     | $0.569\substack{+0.016\\-0.021}$          | $0.412 \rightarrow 0.613$     |
| atmosphe | $	heta_{23}/^{\circ}$                           | $42.2^{+1.1}_{-0.9}$                   | $39.7 \rightarrow 51.0$       | $49.0^{+1.0}_{-1.2}$                      | $39.9 \rightarrow 51.5$       |
|          | $\sin^2	heta_{13}$                              | $0.02225\substack{+0.00056\\-0.00059}$ | $0.02052 \rightarrow 0.02398$ | $0.02223\substack{+0.00058\\-0.00058}$    | $0.02048 \rightarrow 0.02416$ |
| SK a     | $	heta_{13}/^\circ$                             | $8.58\substack{+0.11\\-0.11}$          | $8.23 \rightarrow 8.91$       | $8.57^{+0.11}_{-0.11}$                    | $8.23 \rightarrow 8.94$       |
| with     | $\delta_{ m CP}/^{\circ}$                       | $232^{+36}_{-26}$                      | $144 \rightarrow 350$         | $276^{+22}_{-29}$                         | 194  ightarrow 344            |
|          | $\frac{\Delta m^2_{21}}{10^{-5}~{\rm eV}^2}$    | $7.41\substack{+0.21 \\ -0.20}$        | $6.82 \rightarrow 8.03$       | $7.41\substack{+0.21 \\ -0.20}$           | 6.82  ightarrow 8.03          |
|          | $\frac{\Delta m^2_{3\ell}}{10^{-3}~{\rm eV}^2}$ | $+2.507\substack{+0.026\\-0.027}$      | $+2.427 \rightarrow +2.590$   | $-2.486\substack{+0.025\\-0.028}$         | -2.570  ightarrow -2.406      |

From NuFIT v5.2



### **The Simplest Model**

- Fields : SM + Right-handed Neutrinos  $N_i$  + Scalar
- Symmetry : SM gauge ×  $U(1)_{L_{\mu}-L_{\tau}}$  gauge

| Leptons                                  | $(L_e L_\mu L_\tau)$ | $(e_R \ \mu_R \ 	au_R)$ | $(N_e N_\mu N_\tau)$ |
|------------------------------------------|----------------------|-------------------------|----------------------|
| $\mathrm{U}(1)_{L_{\mu}-L_{	au}}$ charge | (0 +1 -1)            | (0 +1 -1)               | (0 +1 -1)            |

| Scalar                           | Φ <sub>+1</sub><br>SU(2) doublet | Φ <sub>-1</sub><br>SU(2) doublet |
|----------------------------------|----------------------------------|----------------------------------|
| $U(1)_{L_{\mu}-L_{\tau}}$ charge | +1                               | -1                               |

#### Neutrino Mass Matrix

• Neutrino mass matrix through Seesaw Mech;

Model with 
$$\Phi_{+1}$$
)  $\mathcal{M}_{\nu} \simeq -\mathcal{M}_D \mathcal{M}_R^{-1} \mathcal{M}_D^T = \begin{pmatrix} * & 0 & * \\ 0 & 0 & * \\ * & * & * \end{pmatrix}$   
 $\mathcal{M}_D = \frac{1}{\sqrt{2}} \begin{pmatrix} \lambda_e v_1 & \lambda_{e\mu} v_2 & 0 \\ 0 & \lambda_{\mu} v_1 & 0 \\ \lambda_{\tau e} v_2 & 0 & \lambda_{\tau} v_1 \end{pmatrix}, \quad \mathcal{M}_R = \begin{pmatrix} M_{ee} & 0 & 0 \\ 0 & 0 & M_{\mu\tau} \\ 0 & M_{\mu\tau} & 0 \end{pmatrix}$ 

• General form by PMNS matrix.

 $\mathcal{M}_{
u} = U^* \mathrm{diag}(m_1,m_2,m_3) U^\dagger$  (3 × 3 components)

Analysis using an equation obtained by comparing
 the component that is zero by symmetry with the corresponding component.

# One of Results (Model with $\Phi_{+1}$ , Inverted Ordering)



- The range of  $\theta_{23}$  moves to the left in NuFITv5.2.
- The limit on the sum of masses for the mass hierarchy is relaxed compared to the previous limit.
- The model survives in the 3  $\sigma$  range in our analysis.

## Summary of analysis results

• Results of analysis assuming forward and inverse hierarchies for each model.

| Model                                    | Normal Ordering        | Inverted Ordering          |
|------------------------------------------|------------------------|----------------------------|
| $\mathbf{SM} + \mathbf{N}_i + \Phi_{+1}$ | Excluded<br>(Excluded) | Viable in 3σ<br>(Excluded) |
| $\mathbf{SM} + \mathbf{N}_i + \Phi_{-1}$ | Excluded<br>(Excluded) | Excluded<br>(Excluded)     |

Our Results (K.Asai et al. (2018))

• The model have survived in the latest analysis.

#### → Other Constraints?

# Z-Z' Mixing

• Z-Z' mixing is induced by additional  $U(1)_{L_{\mu}-L_{\tau}}$  gauge symmetry.

 $\mathcal{L}_{\text{gauge}} = -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4} Z'_{\mu\nu} Z'^{\mu\nu} + \frac{1}{2} \frac{\varepsilon}{\cos \theta_W} B_{\mu\nu} Z'^{\mu\nu}$  $\mathcal{L}_{\varepsilon_Z} = \frac{m_Z^2}{2} \left( Z_{\mu} \quad Z'_{\mu} \right) \begin{pmatrix} 1 & -\varepsilon_Z \\ -\varepsilon_Z & m_{Z'}^2 / m_Z^2 \end{pmatrix} \begin{pmatrix} Z^{\mu} \\ Z'^{\mu} \end{pmatrix}$  $\mathcal{L} \supset Z'_{\mu} \left( g_{Z'} J^{\mu}_{L_{\mu} - L_{\tau}} + \varepsilon e J^{\mu}_{\text{em}} + \varepsilon_Z g_Z J^{\mu}_{\text{NC}} \right)$ 

 $G_F$  and  $\sin^2 \theta_W$  are changed.

(In our works, the kinetic mixing  $\epsilon \sim g_{Z'}/70$  is negligible because it is much smaller than mass mixing  $\epsilon_Z$  in our parameter region. )

# Atomic Parity Violation (APV)

• The weak charge of Cs from APV experiment:

$$Q_{\rm W}^{\rm exp}(^{133}_{55}{\rm Cs}) = -72.94(43)$$
  
M. Cadeddu et al. (2021)



• Changing of the Cs weak charge induces by Z-Z' mixing is characterized by  $\delta \equiv \frac{m_Z}{m_{z'}} \varepsilon_Z$ :

$$Q_W(^{133}_{55}\text{Cs}) \simeq Q_W^{\text{SM}}(^{133}_{55}\text{Cs}) \left(1 + \delta^2\right)$$
  
 $|\delta|^2 \lesssim 5.7 \times 10^{-3}$  (90% CL)

## Flavor Changing Meson Decay (FCMD)

- Flavor changing meson decay is the good probe of Z' boson.
- Branching ratio of  $K^+ \to \pi^+ Z'$  is characterized by  $\delta \equiv \frac{m_Z}{m_{Z'}} \varepsilon_Z$ :

$$\operatorname{Br}(K^{+} \to \pi^{+} Z') = 6.2 \times 10^{-4} \times \underline{\delta^{2}} \times \left[ X1(m_{H^{+}}) + \frac{X2(m_{H^{+}})}{\tan^{2}\beta} \right] \sqrt{\lambda(m_{K}^{2}, m_{\pi}^{2}, m_{Z'}^{2})}$$

X1, X2 : loop function  $\tan \beta = v_1/v_2$   $\lambda(a, b, c) \equiv a^2 + b^2 + c^2 - 2ab - 2bc - 2ca$ 

• The experimental limit :

$$Br(K^+ \to \pi^+ Z') \le (1-6) \times 10^{-11}$$

(90% CL)

The NA62 collaboration(2021)



# Constraints on the simplest model (with $\Phi_{+1}$ )



- Mixing parameter is  $\delta = \frac{1}{v} \frac{m_{Z'}}{g_{Z'}}$ .
- Green region(FCMD) and blue hatched region(APV) are excluded.
- At  $m_{Z'} = 10$  MeV, there seems to exist the viable region.

#### Constraints from the Higgs Sector



- The hatced region(Unitarity, T parameter) and the orange region(B meson oscillation[A.Giorgi et al. (2023)]) are excluded.
- The simplest model is completely excluded.

# Constraint on the extended model (with $\Phi_{+1}, \sigma_{+1}$ )

![](_page_12_Figure_1.jpeg)

In this model, 
$$\delta = \frac{\operatorname{sign}(Q_{\Phi})}{1 + \tan^2 \theta} \frac{1}{v} \frac{m_{Z'}}{g_{Z'}}$$
  
 $\int \tan \theta \equiv \frac{v_{\sigma}}{v_{\Phi}} \quad (v_{\Phi(\sigma)} \text{ is vev of } \Phi(\sigma)).$   
Cs APV: Much smaller than FCMD.  
 $g_{Z'} \gtrsim \frac{5.4 \times 10^{-4}}{1 + \tan^2 \theta} \left(\frac{m_{Z'}}{10 \text{ MeV}}\right)$   
 $K^+ \to \pi^+ Z':$   
 $g_{Z'} \gtrsim \frac{1.6 \times 10^{-1}}{1 + \tan^2 \theta} \sqrt{\frac{1 \times 10^{-11}}{\operatorname{Br}(K^+ \to \pi^+ Z')}} \left(\frac{m_Z}{10 \text{ MeV}}\right)$ 

• At  $m_{Z'} = 10$  MeV, muon g-2 can be explained when  $\tan \theta \gtrsim 12$ .

# Conclusion

![](_page_13_Picture_1.jpeg)

- From the analysis of neutrino mass matrix structure based on NuFITv5.2, the simplest U(1)<sub> $L_{\mu}-L_{\tau}$ </sub> gauge model with  $\Phi_{+1}$  is viable in  $3\sigma$  in case of inverted ordering although the model was excluded in the previous work based on NuFITv4.0.
- With considering Z-Z' mixing, the simplest model is excluded completely by constraints from APV, FCMD, and Higgs sector.
- When  $\tan\theta \gtrsim 12$ , the extended model with SU(2) singlet scalar  $\sigma$ and  $\Phi_{+1}$  is viable in the region which give the proper correction to muon g-2 at  $m_{Z'} = 10$  MeV.