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①Introduction
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Introduction to neutrinos

What are neutrinos?

◼The fermions in the Standard Model

◼Only weak interaction(very small mass)

◼In the SM, the flavor of neutrinos are defined from the electroweak 
doublet.

◼Majorana vs Dirac

Majorana type : 𝜈 = 𝜈𝑐

Dirac type : 𝜈 ≠ 𝜈𝑐
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Introduction to neutrinos
Neutrino mixing

◼Flavor eigenstates (𝝂𝒆, 𝝂𝝁, 𝝂𝝉) ≠ Mass eigenstates (𝝂𝟏, 𝝂𝟐, 𝝂𝟑)

◼Neutrino flavor eigenstates can be expressed as a superposition of mass 
eigenstates using the PMNS matrix.

◼In the case of Majorana neutrinos, two additional CP phases.

Flavor 
eigenstate

Mass 
eigenstate

PMNS matrix：𝑼𝜶𝒌
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Majorana 
phase



Summary of our work➀
◼We study the probability for chiral oscillation of Majorana neutrino in 

quantum field theory.

◼ We focus on Majorana neutrinos and the effects of the Majorana 
mass term. 
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➢We define the neutrino oscillation probability as the transition 
probability between states with different lepton numbers.

➢We define the vacuum as the eigenstate with zero lepton number 
and zero particle number, and describe its time evolution through 
the Bogoliubov transformation.



Summary of our work➁
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◼We relates the lepton number eigenstates at different times. 

◼We understand the time variation of lepton number in terms of 
transition probabilities. 

◼We present the physical picture that emerges from the Bogoliubov 
transformation.

Why use QFT?

➢ Chiral oscillations are particularly important when momentum is 
small compared to the rest mass.

→The oscillation formula of quantum mechanics, where the survival
probability is conserved to 1, is not applied.

Result



②Hamiltonian and Time evolution of vacuum
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The Hamiltonian of a Majorana neutrino in the 1-flavor case

Defining bilinear operators

𝑎 𝐩, 𝑡 → 𝛼 𝐩, 𝑡 , 𝑏 𝐩, 𝑡 → 𝛽 𝐩, 𝑡
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Time evolution of vacuum

Time evolution of annihilation operators

The relation between the initial and final vacuum states

Time evolution 
of the vacuum in 
the p sector
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③Time evolution of operators and 
Bogoliubov transformation
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Time evolution of operators

◼ Time evolution of annihilation operators (𝐸𝐩 = 𝐩2 + 𝑚2)

◼ Time evolution of Cooper pair operator

The same applies to the creation operator and 𝛽
15



◼ The set of the states defined at arbitrary time t by applying the Cooper pair operators on the vacuum ۧȁ0, 𝑡 𝐩

2-particle state

4-particle state

◼ The relation between the bra vector at 𝑡 = 𝑡𝑓 and the ket vector at 𝑡 = 𝑡𝑖 as determined by the operator 

𝑆𝐩
† 𝐩, 𝜏 = 𝑒𝑖ℎ(𝐩)𝜏 

𝐺𝑖𝑗 𝐩, 𝜏  denotes the matrix elements of the operator 𝑆𝐩
† 𝐩, 𝜏 = 𝑒𝑖ℎ(𝐩)𝜏 among the states at 𝑡 = 𝑡𝑖.

Time evolution of eigenstates by Bogoliubov transformation
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Time evolution of eigenstates by Bogoliubov transformation

◼ The matrix 𝐺 𝐩, 𝜏 is obtained by expanding the unitary operator 𝑆𝐩
† 𝐩, 𝜏 = 𝑒𝑖ℎ(𝐩)𝜏 in a series 

and acting on each eigenstate.

Determine the time evolution of the vacuum.

Fig.3 : Superposition of each 
eigenstate
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The vacuum at the final state is obtained by a superposition of 
each eigenstate.



④ S-Matrix and Probability
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Introduction of the S-matrix

Fig.4: How to define the S-matrix in each momentum sector
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The S-matrix in the p sector

◼ Time evolution of the 1-particle and 3-particle states

➢ In the case of the final state with 1-particle

➢ In the case of the final state with 3-particle

◼ The matrix elements for S-matrix in the p sector
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The S-matrix in the q sector

◼ The matrix elements for S-matrix in the q sector

◼ In the q sector, the eigenvalue of the lepton number for the state is even. To express the state with 
lepton number ±𝑙(𝑙 > 0), we use ȁ ۧ±𝑙, 𝑡 while we use ȁ ۧ𝑛, 𝑡 to denote a 𝑛 𝑛 > 0 particle state.

Using this, 
the 2-particle state is

For convenience, the four eigenstates are renamed as 
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Probability

The survival probability The chiral oscillation probability

Neutrino transition probability in the p sector Neutrino transition probability in the q sector

The sum of these transition probabilities over the 
possible final states
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Probability

The survival probability The chiral oscillation probability

Neutrino transition probability in the p sector Neutrino transition probability in the q sector

The sum of these transition probabilities over the 
possible final states

The velocity 
defined in 

𝑣 =
𝐩

𝐸𝐩 28



Probability

Fig.6: The survival probability 𝑃𝜈→𝜈(𝐩, 𝜏)

Period Oscillation Patterns

Relativistic neutrino
Red line：𝒗 = 𝟎. 𝟗𝟗 𝜏 ≅

0.1 2𝜋

𝑚

Survival probability: oscillates around 1
Chiral oscillation probability: oscillates around 0

Non-relativistic neutrino
Blue line：𝒗 = 𝟎. 𝟏

𝜏 ≅
𝜋

𝑚
Both survival and chiral oscillation probabilities oscillate 
between 0 and 1

Fig.7: The chiral oscillation probability 𝑃𝜈→𝜈ഥ𝜈ഥ𝜈(𝐩, 𝜏)

Red line(relativistic case) : 𝒗 = 𝟎. 𝟗𝟗 , Green line : 𝒗 = Τ𝟏 𝟐 ,  Blue line(non-relativistic case) : 𝒗 = 𝟎. 𝟏
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The oscillation probability is conserved :  𝑃𝜈→𝜈 𝐩, 𝜏 + 𝑃𝜈→𝜈ഥ𝜈ഥ𝜈 𝐩, 𝜏 = 1



⑤Conclusion
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◼We show that the state developed from the vacuum state is a of the vacuum state, 
the 2-particle state, and the 4-particle state and the time evolution can be 
described as the Bogoliubov transformation.

◼We find that the chiral oscillation is not 𝝂 → ഥ𝝂, but a transition 𝝂 → 𝝂ഥ𝝂ഥ𝝂 . This is 
because the Majorana mass term creates anti-neutrino Cooper pair from the 
vacuum and it appears through time.

◼ The expectation value of the lepton number in [1] equals to the difference of the 
survival probability and the chiral oscillation probability.

◼We will expand this formula to the three-flavor case.
◼We need to discuss how the oscillation probability is affected when the matter 

effects are considered.
◼We need to study the behaver of momentum zero mode for Majorana neutrino.

Conclusion

Future work
[1]A.Salim Adam et.al Phys. Rev. D 108, no.5, 056009 (2023) [arXiv:2106.02783 [hep-ph]].
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Thank you for listening
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Back up
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Reason to exclude zero mode ①
◼To quantize the Majorana field, the standard approach is to introduce the creation and annihilation 

operators for massive Majorana field.

This approach is not suitable for the purpose to compute the transition amplitude among the 
states with definite lepton numbers.

Why？

➢ Majorana particles are indistinguishable from their antiparticles, and 1-particle mass eigenstate 
obtained by applying the creation operator on the time invariant vacuum, does not carry the definite 
lepton number.

◼ The creation and annihilation operators are chosen in such way that the one particle state has the 
definite lepton number.

This is achieved by expanding the field operator with massless plane wave spinors and creation 
and annihilation operators associated with them.

At the expense of introducing massless spinors, the time evolution of the operators become complex 
and the vacuum is time dependent.



Reason to exclude zero mode ➁
◼ The lepton number operator is simply written as the difference of the number operators for 

neutrino and anti-neutrino.
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➢ The momentum zero mode cannot be expressed in terms of particle and antiparticle creation 
and annihilation operators.

➢ A massless spinor cannot express the spinor corresponding to the momentum zero mode of a 
massive Majorana field.

We need to exclude the zero mode.

If we keep the zero mode, one must attribute the mass parameter to operators for the zero mode and 
the lepton number operator can not be simply expressed by the difference of the number operators 
for neutrino and anti-neutrino.

Non-zero mode 
only.



The Lagrangian of a Majorana neutrino in the 1-flavor case

◼ The Lagrangian for a 1-flavor

◼ Expansion of the left-handed Majorana neutrino field in a 
1-flavor using massless spinors 𝑢𝐿 and 𝑣𝐿.

Components of 𝑢𝐿, 𝑣𝐿

Rewriting in terms of 
the chiral field 𝜂

Expressing the chiral field 𝜂 using 
creation and annihilation operators. 

[1]A.Salim Adam et.al Phys. Rev. D 108, no.5, 056009 (2023)

[arXiv:2106.02783 [hep-ph]].
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The Hamiltonian of a Majorana neutrino in the 1-flavor case

◼ The path-integral expression of the action for Majorana neutrino for a single flavor case

◼ All the constraints and gauge fixing-like conditions.

◼ anti-commutation relations among 𝜂 and 𝜂†

◼ Hamiltonian (Chiral Field Representation)
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Commutation relation of ℎ(𝐩, 𝑡)
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Commutation relations of Cooper pair operator and Number operator

Commutation relation of the Hamiltonian for different momentum 𝐩 ≠ 𝐪

The set of the operators {𝛼 ±𝐩, 𝑡 , 𝛽 ±𝐩, 𝑡 , 𝛼† ±𝐩, 𝑡 , 𝛽† ±𝐩, 𝑡 } and their bilinear operators in which appear 
in ℎ(𝐩, 𝑡) are called as operators of p sectors. For instance, the operator 𝛼 𝐩 and 𝛼 −𝐩 with 𝐩 ∈ 𝐴 are 
classified as the operators in the same p sectors.



Time evolution of creation and annihilation operators

◼ Plane wave expansion of the left-handed neutrino field

◼ Plane wave expansion of the massive Majorana field

◼ The relation between the massless spinor operator 𝑎 𝐩, 𝑡 , 𝑏(𝐩, 𝑡) and the Majorana 
operator 𝑎𝑀 𝐩, 𝑡 .

[1]A.Salim Adam et.al Phys. Rev. D 108, no.5, 056009 (2023) [arXiv:2106.02783 [hep-ph]].
[2]A. S. Adam et.al doi:10.31526/ACP.BSM-2021.29 [arXiv:2105.04306 [hep-ph]].
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Time evolution of eigenstates by Bogoliubov transformation

◼ The time evolution of the bra vector can be derived from the matrix element 𝐺𝑖𝑗 𝐩, 𝜏 .

Time evolution of vacuum

Series expansion of the unitary operator 𝑆𝐩
† 𝐩, 𝜏 = 𝑒𝑖ℎ(𝐩)𝜏. (𝑘 =

𝐩

𝑚
)

The action of 𝑒𝑖ℎ(𝐩)𝜏 on the bra vector

ሚ𝐴

The matrix 𝐺 𝐩, 𝜏  is

40
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