フレーバーアノマリーの現状とBファクトリーの未来

6 August 2024

b→cτν 理論

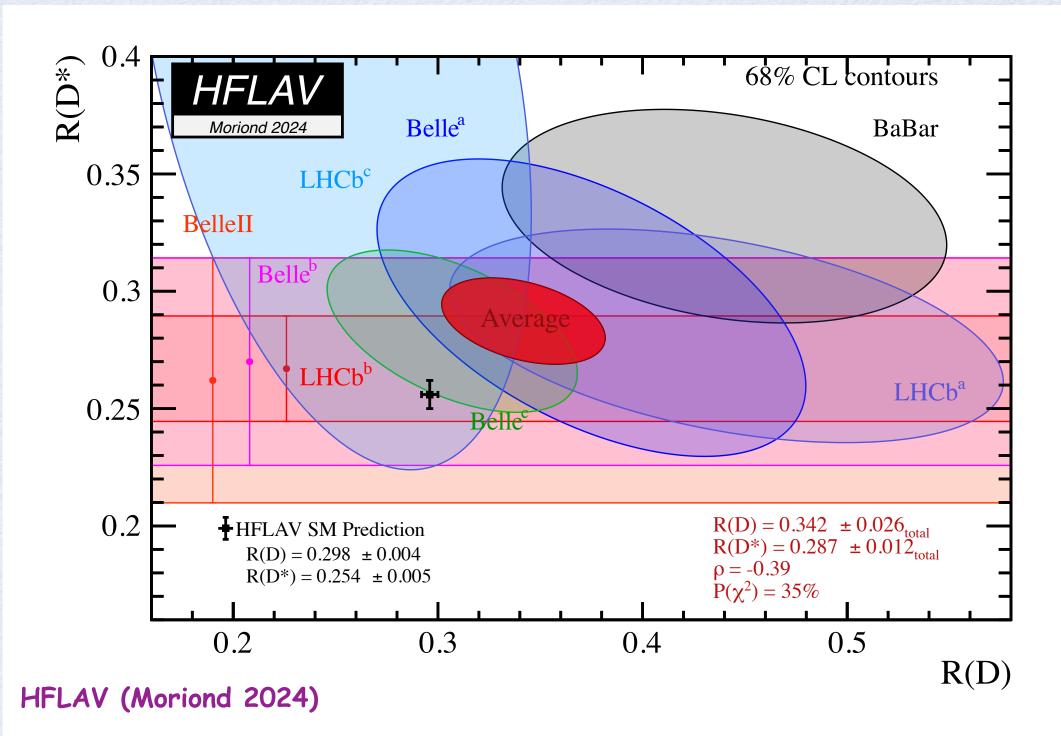
$$R_{D^{(*)}} = rac{\mathcal{B}(ar{B}
ightarrow D^{(*)} au ar{
u})}{\mathcal{B}(ar{B}
ightarrow D^{(*)} \ell ar{
u})}$$

渡邉諒太郎

Ryoutaro Watanabe

Content

History of RD(*)


SM predictions

New Physics: status

New Physics: collider bound

New Physics: flavor signal

History of RD(*)

Experiments

Preliminary reports are removed

2012: first BaBar measurement

(τ→lvv, had. tag)

2015: first Belle (τ→lvv, had. tag)

first LHCb $(\tau \rightarrow \mu\nu\nu)$ D* only

first HFLAV average

2016: new two Belle D* only

 $(\tau \rightarrow l\nu\nu$, semi-lept. tag) $(\tau \rightarrow \pi \nu$, had. tag)

2018: new LHCb $(\tau \rightarrow 3\pi v)$ D* only

2019: Belle <u>update 2016 with D&D*</u>

(τ→lvv, semi-lept. tag)

2023: LHCb ($\tau \rightarrow \mu\nu\nu$) update 2015 with D&D*

LHCb $(\tau \rightarrow 3\pi \nu)$ update 2018, D* only

2024: first Belle II D* only

Theory

2008: first robust RD calc.

CLN with 2008 combined data

2012: **first RD*** calc.

CLN with 2010 Belle data

charged Higgs disfavored

inconsistent with BaBar

2013: leptoquark studies

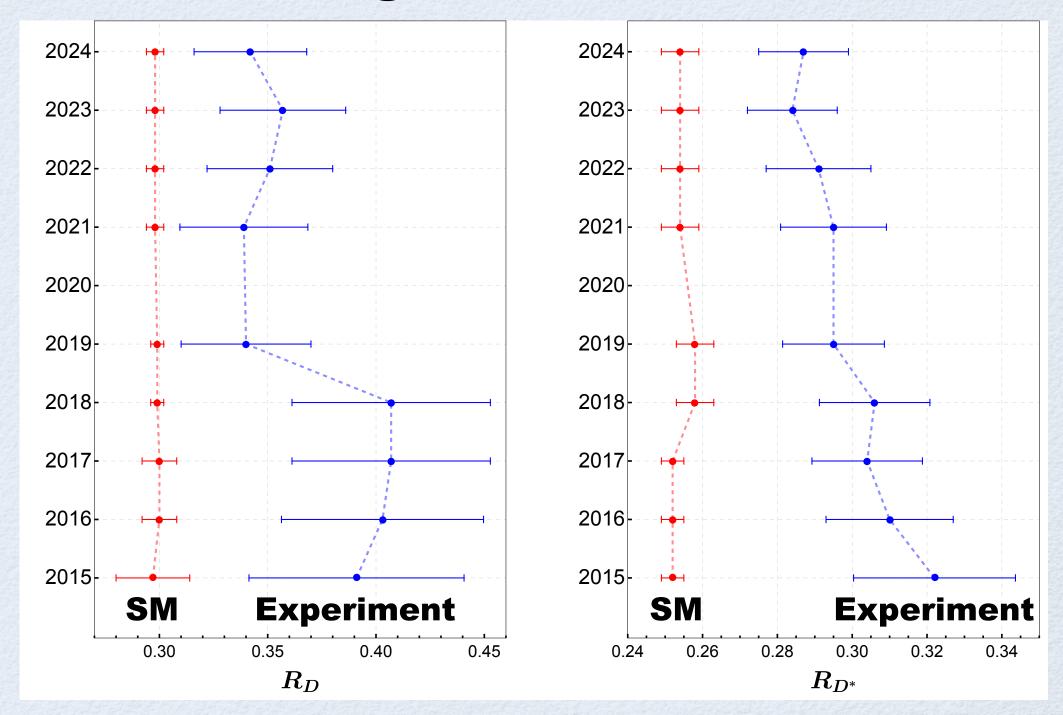
possible solutions to "anomaly"

2016: first Lattice for D

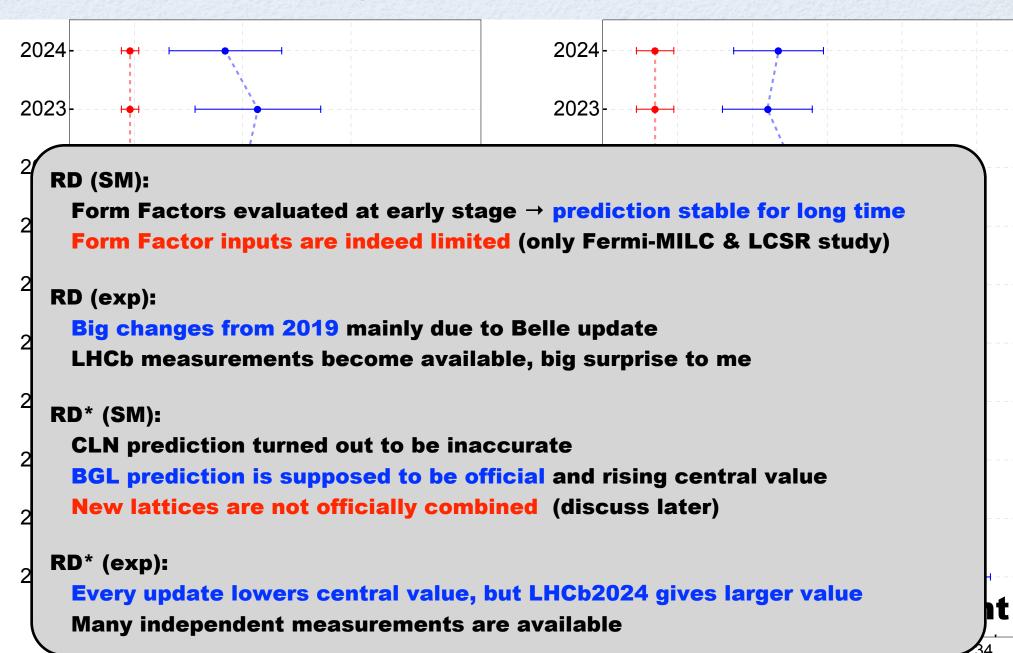
BGL available for RD calc.

2017: first Lattice for D* at 0-recoil

BGL & general HQET studied


2018: first LCSR large recoil fit

2021: Non 0-recoil Lattice year


2021: FNAL-MILC

2023: JLQCD, HPQCD

HFLAV averages

HFLAV averages

 R_D

 R_{D^*}

SM predictions

Gray analyses:

are superseded by other data,
or not provided as public data

Experimental inputs		
Belle 2015	$\bar{B} \to D \ell \bar{\nu}$	w distribution, 10 bins
Belle 2017 (full tag)	$\bar{B}^0 \to D^{*+} \ell^- \bar{\nu}$	$(w, \theta_{\ell}, \theta_{V}, \chi)$ distributions, 40 (-3) bins
Belle 2018 (untagged)	$\bar{B}^0 \to D^{*+} e^- \bar{\nu}, \ D^{*+} \mu^- \bar{\nu}$	$(w, \theta_{\ell}, \theta_{V}, \chi)$ distributions, 80 (-6) bins
BaBar 2019 (full tag)	$\bar{B} \to D^* \ell \bar{\nu}$	Data points are not provided
Belle II 2022 (untagged)	$\bar{B}^{0,+} \to D^{+,0} e^- \bar{\nu}, \ D^{+,0} \mu^- \bar{\nu}$	$(w, \theta_{\ell}, \theta_{V}, \chi)$ distributions, 40 (-3) bins
Belle II 2023 (full tag)	$\bar{B}^{0,+} \to D^{*+,0} e^- \bar{\nu}, \ D^{*+,0} \mu^- \bar{\nu}$	$(w, \theta_{\ell}, \theta_{V}, \chi)$ distributions, 160 (-12) bins
Belle 2023 (full tag)	$\bar{B}^{0,+} \to D^{*+,0} e^- \bar{\nu}$	$(w, \theta_{\ell}, \theta_{V}, \chi)$ distributions, 160 (-12) bins
BaBar 2023	$\bar{B} \to D \ell \bar{\nu}$	Data points are not provided
Lattice		
Fermi-MILC 2014	$B \to D^*$ form factors (SM)	zero-recoil $w = 1$ point
Fermi-MILC 2016	$B \to D \text{ (SM)}$	w = (1.00, 1.08, 1.16) points
HPQCD 2017	$B \to D^* \text{ (SM)}$	zero-recoil $w = 1$ point
Fermi-MILC 2021	$B \to D^*$ (SM & Tensor)	w = (1.03, 1.10, 1.17) points
HPQCD 2023	$B \to D^*$ (SM & Tensor)	$q^2 = i \times q_{max}^2/3, i = (0, 1, 2, 3)$ points
JLQCD 2023	$B \to D^* \text{ (SM)}$	w = (1.025, 1.06, 1.10) points
LCSR (Danny et al.)	$B \to D^{(*)}$ (SM & Tensor)	$q^2/\text{GeV}^2 = (0, -5, -10, -15) \text{ points}$

Gray analyses: are superseded by other data, or not provided as public data

	of flot provided as public	uata
Exp	B → D data points are limited and given at early stage	
$_{ m Be}$		
Be	B → D* is in development, and "SM prediction" is messy	ıs
${ m Be}$		ns
Ba	BaBar 2019: 0.253(5) <u>own BaBar 2019 with BGL + HQET</u>	
Be	JLQCD: 0.252(22) own Lattice	ns
${f Be}$		bin
${ m Be}$	HQPCD: 0.273(15) own Lattice	bin
Ba	0.248(2) <u>own Lattice + Belle 2018</u>	
Lat	Fermi-MILC: 0.265(13) own Lattice	
Fei	0.248(1) own Lattice + Belle 2018 + BaBar 2019	
Fei		
HF	2305.11855: 0.251(1) <u>Fermi-MILC + JLQCD + LCSR</u>	
Fei	<u>+ Belle 2018 + Belle 2023</u>	
HF	2310.03680: 0.262(9) Fermi-MILC + JLQCD + HPQCD	
$_{ m JL}$	+ Belle 2018 + Belle 2023 + Belle II 2023 (full tag)	
T.C	with "Dispersive Method"	

Gray analyses:

are superseded by other data,
or not provided as public data

Experimental inputs		
Belle 2015	$\bar{B} \to D \ell \bar{\nu}$	w distribution, 10 bins
Belle 2017 (full tag)	$\bar{B}^0 \to D^{*+} \ell^- \bar{\nu}$	$(w, \theta_{\ell}, \theta_{V}, \chi)$ distributions, 40 (-3) bins
Belle 2018 (untagged)	$\bar{B}^0 \to D^{*+} e^- \bar{\nu}, \ D^{*+} \mu^- \bar{\nu}$	$(w, \theta_{\ell}, \theta_{V}, \chi)$ distributions, 80 (-6) bins
BaBar 2019 (full tag)	$\bar{B} \to D^* \ell \bar{\nu}$	Data points are not provided
Belle II 2022 (untagged)	$\bar{B}^{0,+} \to D^{+,0} e^- \bar{\nu}, \ D^{+,0} \mu^- \bar{\nu}$	$(w, \theta_{\ell}, \theta_{V}, \chi)$ distributions, 40 (-3) bins
Belle II 2023 (full tag)	$\bar{B}^{0,+} \to D^{*+,0} e^- \bar{\nu}, \ D^{*+,0} \mu^- \bar{\nu}$	$(w, \theta_{\ell}, \theta_{V}, \chi)$ distributions, 160 (-12) bins
Belle 2023 (full tag)	$\bar{B}^{0,+} \to D^{*+,0} e^- \bar{\nu}$	$(w, \theta_{\ell}, \theta_{V}, \chi)$ distributions, 160 (-12) bins
BaBar 2023	$\bar{B} \to D \ell \bar{\nu}$	Data points are not provided
Lattice		
Fermi-MILC 2014	$B \to D^*$ form factors (SM)	zero-recoil $w = 1$ point
Fermi-MILC 2016	$B \to D \text{ (SM)}$	w = (1.00, 1.08, 1.16) points
HPQCD 2017	$B \to D^* \text{ (SM)}$	zero-recoil $w = 1$ point
Fermi-MILC 2021	$B \to D^*$ (SM & Tensor)	w = (1.03, 1.10, 1.17) points
HPQCD 2023	$B \to D^*$ (SM & Tensor)	$q^2 = i \times q_{max}^2/3, i = (0, 1, 2, 3)$ points
JLQCD 2023	$B \to D^* \text{ (SM)}$	w = (1.025, 1.06, 1.10) points
LCSR (Danny et al.)	$B \to D^{(*)}$ (SM & Tensor)	$q^2/\text{GeV}^2 = (0, -5, -10, -15) \text{ points}$

Ba

 \mathbf{Be}

 \mathbf{Be}

 \mathbf{Be}

Ba

Gray analyses:

are superseded by other data,
or not provided as public data

 $\mathbf{h}\mathbf{S}$

bins

bins

Experimental inputs				
Belle 2015	$ar{B} o D \ell ar{ u}$	w distribution, 10 bins		
Belle 2017 (full tag)	$\bar{B}^0 \to D^{*+} \ell^- \bar{\nu}$	$(w, \theta_{\ell}, \theta_{V}, \chi)$ distributions, 40 (-3) bins		
Belle 2018 (untagged)	$\bar{B}^0 \to D^{*+} e^- \bar{\nu}, \ D^{*+} u^- \bar{\nu}$	$(w, \theta_{\ell}, \theta_{V}, \chi)$ distributions, 80 (-6) bins		

HFLAV 2024 still refers SM based on 2015 - 2017

RD: 0.298(4) RD*: 0.254(5)

- → needs general consensus on how to combine existing inputs
- → need to check whether each FF input is reliable

Lattice		
Fermi-MILC 2014	$B \to D^*$ form factors (SM)	zero-recoil $w = 1$ point
Fermi-MILC 2016	$B \to D \text{ (SM)}$	w = (1.00, 1.08, 1.16) points
HPQCD 2017	$B \to D^* \text{ (SM)}$	zero-recoil $w = 1$ point
Fermi-MILC 2021	$B \to D^*$ (SM & Tensor)	w = (1.03, 1.10, 1.17) points
HPQCD 2023	$B \to D^*$ (SM & Tensor)	$q^2 = i \times q_{max}^2/3, i = (0, 1, 2, 3)$ points
JLQCD 2023	$B \to D^* \text{ (SM)}$	w = (1.025, 1.06, 1.10) points
LCSR (Danny et al.)	$B \to D^{(*)}$ (SM & Tensor)	$q^2/\text{GeV}^2 = (0, -5, -10, -15) \text{ points}$

New Physics: status

Data set

FF inputs from

Lattice (2014+2016+2017) + LCSR + Belle (2017 + 2018)

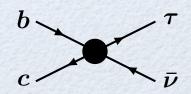
FF parameterization

general HQET up to 1/mc^2 (See 2004.10208)

SM prediction: RD = 0.290(3) $RD^* = 0.248(1)$ $FLD^* = 0.464(3)$

 $\chi^2_{
m SM}pprox {23.1}$

NP fit analysis to


HFLAV average: RD = 0.342(26) $RD^* = 0.287(12)$ corr. = -0.39

Private average: $FLD^* = 0.49(5)$ Belle 2019 + LHCb 2023

FLD*: D* longitudinal polarization in $B\rightarrow D*\tau v$

NP interpretations

NP EFT:
$$\mathcal{L}_X = 2\sqrt{2}G_F V_{cb} C_X^{ au} (ar{c} \, \Gamma b) (ar{ au} \, \Gamma'
u)$$

Solutions to the RD(*) anomaly:

$$(ar{c}\gamma^{\mu}P_Lb)(ar{\ell}\gamma_{\mu}P_L
u) \qquad rac{C_{V_L}^{ au}}{\epsilon}pprox 0.08 \qquad ext{Pull} \equiv \sqrt{\chi_{ ext{SM}}^2-\chi_{ ext{NP}}^{2, ext{best}}}pprox 4.8 \quad \left(\sqrt{\chi_{ ext{SM}}^2}pprox 4.8
ight)$$

$$(\bar{c}\gamma^{\mu}P_Rb)(\bar{\ell}\gamma_{\mu}P_L\nu)$$
 $C_{V_R}^{\tau} \approx 0.01 \pm i0.41$ Pull ≈ 4.4

$$(\bar{c}P_Lb)(\bar{\ell}P_L\nu)$$
 $C_{S_I}^{\tau} \approx -0.79 \pm i0.86$ Pull ≈ 4.3

$$(\bar{c}P_Rb)(\bar{\ell}P_L
u)$$
 $C_{S_R}^{ au}pprox 0.18$ Pull $pprox 3.9$

$$(ar{c}\sigma^{\mu
u}P_Lb)(ar{\ell}\sigma_{\mu
u}P_L
u) \qquad C_T^{ au}pprox 0.02\pm i0.13 \qquad ext{Pull}pprox 4.3$$

2405.06062

The situation has not been changed since HFLAV 2019

V_L / S_R gives the best / worst Pull

V_R & S_L need very large WCs → disfavored by collider bound (see later)

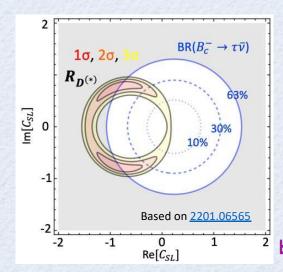
T is marginal, but single T operator is not usually generated (see next)

NP scenarios

Vector boson (W'): $C_{V_L}^{\tau} \approx 0.08$, or $C_{V_R}^{\tau} \approx 0.01 \pm i0.41$

SU(2) model inevitably includes Z' that is very constrained due to tree-level FCNC

The VL best pull implies $M_{W'}/g_{W'}pprox 3\,{
m TeV}$

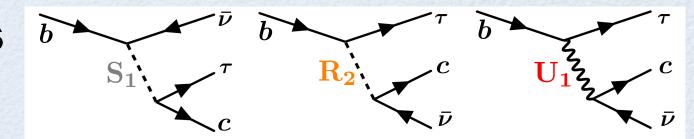

Charged Higgs:
$$C_{S_L}^{\tau} \approx -0.79 \pm i0.86$$
, or $C_{S_R}^{\tau} \approx 0.18$

Typical 2HDM cannot achieve the solution
$$\qquad$$
 ex) $\frac{C_{S_R}^{\mathrm{Type~II}}}{m_{H^\pm}^2} = -\tan^2 eta \frac{m_b m_ au}{m_{H^\pm}^2} \Big/ \left(2\sqrt{2}V_{cb}G_F\right)$

General 2HDM \int needs to suppress S_R coupling due to neutral-mixing (Δ Ms)

can give sizable S_L, but needs to avoid the Bc limit

The robust constraint $Br(Bc \rightarrow \tau v) < 60\%$ 2201.06565


→ Updated from the previous study of < 30%</p>

This update significantly affects the S_L solution

→ The S_L solution revived, but on the edge!

$$C_{S_L}^{ au, +B_c} pprox -0.57 \pm i0.86 \quad ext{(Pull} pprox 4.3)$$

NP scenarios

Leptoquarks (LQ):

Three LQ bosons are capable of the RD(*) solution: \$1, R2, U1

1309.0301

They have two independent and specific WCs for each

$$S_1(\bar{3}, 1, 1/3)$$
 scalar: $C_{V_L}, C_{S_L} = -4C_T$

Best Pull: $(C_{V_L}, C_{S_L}) \approx (0.07, \pm i0.15)_{2D}, (0, 0.18)_{1D}, (0.08, 0)_{1D}$

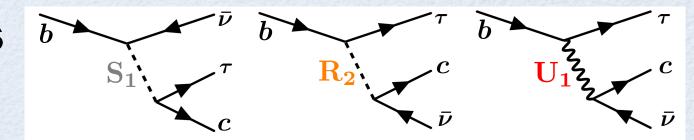
was discussed in the context of RD-RK solution and revived these days

$$R_2(3, 2, 7/6)$$
 scalar: C_{V_R} , $C_{S_L} = +4C_T$

Best Pull: $(C_{V_R}, C_{S_L}) \approx (\pm i 0.65, 0.01 \mp i 0.62)_{2D}, (0, -0.09 \pm i 0.56)_{1D}$

UV proper theory suppress $rac{C_{V_R}}{M_{
m LQ}^2} \sim rac{g_{
m LQ}^2}{M_{
m LQ}^2} imes rac{v^2}{M_{
m LQ}^2}$, so S_L-T solution is reliable

$${
m U}_1 \, (3,1,2/3) \,\, {
m vector} \colon \,\, C_{V_L}, \,\, C_{S_R}$$


UV completion has been discussed for a long time

MFV with U(2) flavor symmetry results in $\,C_{S_R} = -2\,e^{I\phi}\,C_{V_L}$

Best Pull: $(\phi, C_{V_L}) \approx (0.08, 0.47\pi)$

NP scenarios

Leptoquarks (LQ):

Three LQ bosons are capable of the RD(*) solution: \$1, R2, U1

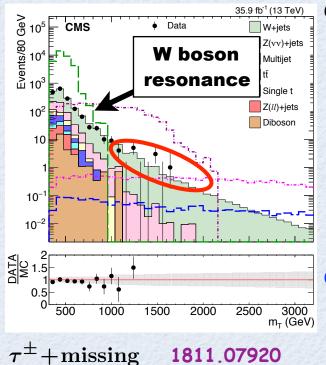
1309,0301

They have two independent and specific WCs for each

The situation has not been changed since HFLAV 2019

All LQ solutions are on similar Pulls → no preference needs LQ predictions on other observables / to check collider bound (next)

New Physics: collider bound


Collider signals

W boson resonance of τ + missing search:

Its tail can be interpreted as NP contribution responsible for the RD(*) anomaly Minimal setup: NP effect exists only in $bc \to \tau v$

Vector boson scenario: $M_{W'}/g_{W'}>1.5~{
m TeV}~{
m (Minimal)}\,,~~M_{W'}>5~{
m TeV}~{
m (SSM)}$

EFT analysis for general WCs:

Competitive with the RD(*) solutions that require large WCs

$$|C_{V_L}^{ ext{LHC-EFT}}| < 0.32 \quad \Leftrightarrow \quad C_{V_L}^{R_{D^{(*)}}} pprox 0.08$$

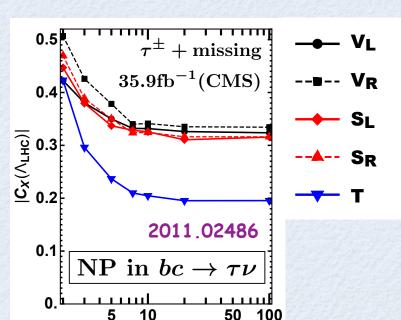
$$|C_{V_R}^{
m LHC\text{-}EFT}| < 0.33 \quad \Leftrightarrow \quad C_{V_R}^{R_{D^{(*)}}} pprox { extbf{0.01}} + i\, extbf{0.41}$$

$$|C_T^{ ext{LHC-EFT}}| < 0.20 \quad \Leftrightarrow \quad C_T^{R_{D^{(*)}}} pprox 0.02 + i\,0.13$$

$$|C_{S_L}^{ ext{LHC-EFT}}| < 0.32 \quad \Leftrightarrow \quad |C_{S_L}^{R_{D^{(*)}},\,B_c}| pprox |-0.57+i\,0.86| = extbf{1.03}$$

Charged Higgs (SL) is very excluded, but has an exception

- → tail pT < 500GeV is less sensitive to NP signal
- ⇒ mass window 180GeV < mH < 400GeV is not accessible


Collider signals

t-channel case: 2011.02486

EFT approximation is not good at high-mT

- → if NP mass is close to mT bin ~ 1TeV applicable for bound
- → In particular, it overestimates the signal in the case of t-channel
- → Large t(<0) generates large mT and reduces the contribution

$$\textbf{ex)} \ \ \mathcal{L}_U = h_U^{ij} \left(\bar{q}_L^i \gamma^\mu \ell_L^j \right) U_\mu + \text{h.c.} \quad \Rightarrow \quad \frac{h_U^{b\tau} \cdot h_U^{c\nu}}{t - m_{\mathrm{LQ}}^2} \neq - \frac{h_U^{b\tau} \cdot h_U^{c\nu}}{m_{\mathrm{LQ}}^2} \equiv C_{V_L}$$

M_{NP} [TeV]

Proper bound for t-channel NP:

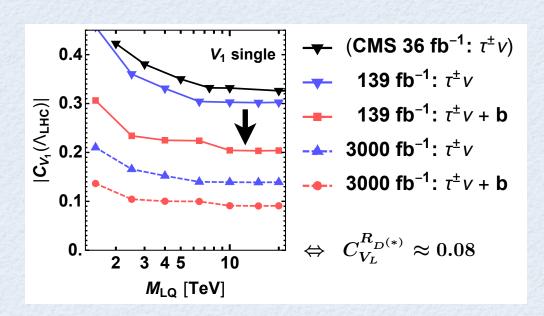
- → 2TeV LQ: EFT bound is 40~100% overestimated
- → 5TeV LQ: 10~20% overestimated
- → crucial for R2 LQ solution with S_L-T operator

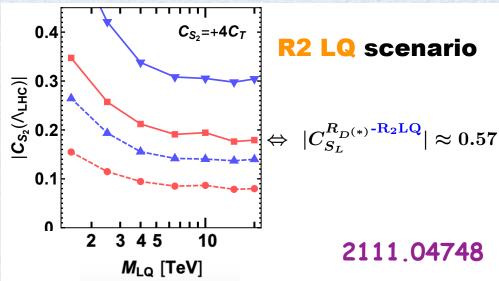
$$|C_{S_L}^{ ext{LHC-LQ}}| < 0.80 \; \Leftrightarrow \; |C_{S_L}^{R_{D^{(*)}} ext{-R}_2 ext{LQ}}| pprox |-0.09+i\,0.56| = 0.57$$

Future capability:

→ 3ab^-1 LHC reaches all the solutions except V_L

$$|C_T^{
m LHC~3ab^{-1}}| < 0.07 \quad \Leftrightarrow \quad |C_T^{R_{D^{(*)}}}| pprox 0.13$$
 $|C_{V_L}^{
m LHC~3ab^{-1}}| < 0.12 \quad \Leftrightarrow \quad C_{V_L}^{R_{D^{(*)}}} pprox 0.08$

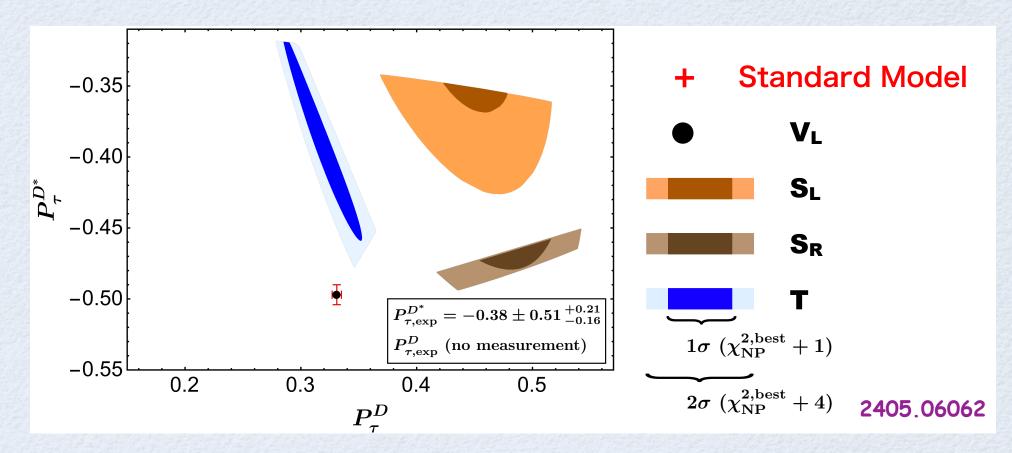

Collider signals


Proposal of improvement:

Requiring additional b-jet greatly improves NP sensitivity

2008.07541

- ightharpoonup comes from $gq
 ightarrow b \, \ell \,
 u \ \ (q=u,c)$ suppressed by $|Vqb|^2$ in the SM
- ⇒ simulation shows +b search could improve the LHC bound by ~50%


tau + b + missing search:

competitive with the V_L solution only with 3ab^-1

can test the R2 LQ solution even with current 139 fb^-1 data

New Physics: flavor signal

Tau spin polarization:

NP solutions for RD(*) anomaly predict distinct tau polarizations

- → could identify T/SL/SR solution (blue/yellow/brown)
- **→** Current experimental measurement

1709.00129 (Belle)

D* mode: $P_{ au, \mathrm{exp}}^{D^*} = -0.38 \pm 0.51^{\,+0.21}_{\,-0.16}$

D mode: not measured yet

Λ_b decay:

Another R proposal from b-baryon: $R_{\Lambda_c}=\mathcal{B}(\Lambda_b o\Lambda_c\, au\,
u)\Big/\mathcal{B}(\Lambda_b o\Lambda_c\,\ell\,
u)$

- → light lepton modes were measured by DELPHI/CDF/LHCb since 2004

$$R_{\Lambda_c}^{\rm LHCb} = 0.242 \pm 0.026 \pm 0.04 \pm 0.059 \Leftrightarrow R_{\Lambda_c}^{\rm SM} = 0.324 \pm 0.004$$

"Sum rule" has been found:

1811.09603, 1905.08253

→ Numerical NP formulae for the R ratios

$$\frac{R_D}{R_D^{\text{SM}}} = |1 + C_{V_L} + C_{V_R}|^2 + 1.01|C_{S_L} + C_{S_R}|^2 + 0.84|C_T|^2 + 1.49\text{Re}[(1 + C_{V_L} + C_{V_R})(C_{S_L}^* + C_{S_R}^*)] + 1.08\text{Re}[(1 + C_{V_L} + C_{V_R})C_T^*]$$

$$\begin{split} \frac{R_{D^*}}{R_{D^*}^{\text{SM}}} &= |1 + C_{V_L}|^2 + |C_{V_R}|^2 + 0.04|C_{S_L} - C_{S_R}|^2 + 16.0|C_T|^2 \\ &- 1.83 \text{Re}[(1 + C_{V_L})C_{V_R}^*] - 0.11 \text{Re}[(1 + C_{V_L} - C_{V_R})(C_{S_L}^* - C_{S_R}^*)] \\ &- 5.17 \text{Re}[(1 + C_{V_L})C_T^*] + 6.60 \text{Re}[C_{V_R}C_T^*] \,, \end{split}$$

$$\begin{split} \frac{R_{\Lambda_c}}{R_{\Lambda_c}^{\text{SM}}} &= |1 + C_{V_L}|^2 + |C_{V_R}|^2 - 0.72 \, \text{Re}[(1 + C_{V_L})C_{V_R}^*] + 0.50 \, \text{Re}[(1 + C_{V_L})C_{S_R}^* + C_{V_R}C_{S_L}^*] \\ &+ 0.33 \, \text{Re}[(1 + C_{V_L})C_{S_L}^* + C_{V_R}C_{S_R}^*] + 0.52 \, \text{Re}[C_{S_L}C_{S_R}^*] + 0.32 \, (|C_{S_L}|^2 + |C_{S_R}|^2) \\ &- 3.11 \, \text{Re}[(1 + C_{V_L})C_T^*] + 4.88 \, \text{Re}[C_{V_R}C_T^*] + 10.4 \, |C_T|^2 \,, \end{split}$$

Λ_b decay:

Another R proposal from b-baryon: $R_{\Lambda_c}=\mathcal{B}(\Lambda_b o\Lambda_c\, au\,
u)\Big/\mathcal{B}(\Lambda_b o\Lambda_c\,\ell\,
u)$

- → light lepton modes were measured by DELPHI/CDF/LHCb since 2004
- → the first result for tau together with R was reported by LHCb 2201.03497

$$R_{\Lambda_c}^{\text{LHCb}} = 0.242 \pm 0.026 \pm 0.04 \pm 0.059 \Leftrightarrow R_{\Lambda_c}^{\text{SM}} = 0.324 \pm 0.004$$

"Sum rule" has been found:

1811.09603, 1905.08253

R ratios are related (almost) independent of NP contributions:

$$rac{R_{\Lambda_c}}{R_{\Lambda_c}^{
m SM}} = (0.27 \pm 0.02) rac{R_D}{R_D^{
m SM}} + (0.73 \mp 0.02) rac{R_{D^*}}{R_{D^*}^{
m SM}} + \delta(C_X)$$

Significant point: $|\delta(C_X)| \ll 1$ $(|C_X| < 1)$

RA $_{f c}$ that should be measured is predicted: $\left. R_{f A_c}^{
m fit} = 0.370 \pm 0.017
ight|_{R_X^{
m SM,\ exp}} \pm (< 0.001)
ight|_{
m SR}$

- ightharpoonup inconsistent with $R_{\Lambda_c}^{
 m LHCb} = 0.242 \pm 0.026 \pm 0.04 \pm 0.059$
- → potentially another problem if LHCb result is confirmed in future

Summary

History of RD(*)

Big update in 2019 / New results 2023-24 give limited impact

SM predictions

RD: stable due to limited input / RD*: needs general consensus

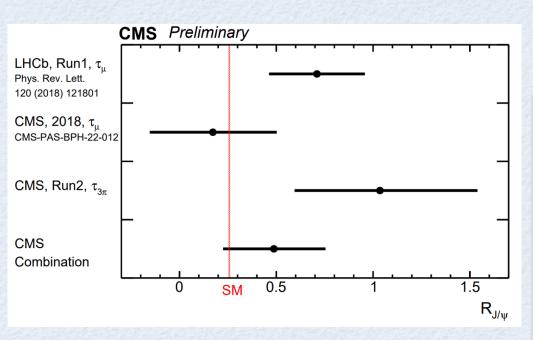
New Physics: status

Several NPs give good solutions but indistinguishable

New Physics: collider bound

Charged Higgs: viable only in limited mass range (mt ~ 400GeV)

Leptoquark: viable but testable at HL-LHC or with + b jet


New Physics: flavor signal

Measure tau polarization / Check $R_{\Lambda c}$ by sum rule

Backup

Bc decay:

The "R" observable for Bc: $R_{J/\psi}={\cal B}(B_c o J/\!\psi\, au\,
u)\Big/{\cal B}(B_c o J/\!\psi\,\mu\,
u)$

https://cms.cern/news/cms-and-quest-preferredlepton-flavor

— Private combination:

$$R_{J/\psi}^{\mathrm{CMS+LHCb}} = 0.61 \pm 0.18$$

→ too large error to include NP fit analysis

SM (2017): 0.28 ± 0.05 1709.08644 SM (2019): 0.24 ± 0.01 1901.08368 SM (2022): 0.258 ± 0.004 2204.04357

— FF updated:

2007.06957

- → QCD (2017) / SR (2019) / lattice (2020)
- → deviations affected the SM value
- Strong relation with the RD*:

$$rac{R_{J/\psi}}{R_{J/\psi}^{
m SM}} \simeq rac{R_{D^*}}{R_{D^*}^{
m SM}}$$

- Consistency:

$$rac{R_{J/\psi}^{
m exp}}{R_{J/\psi}^{
m SM}} - rac{R_{D^*}^{
m exp}}{R_{D^*}^{
m SM}} = 1.25 \pm 0.78$$

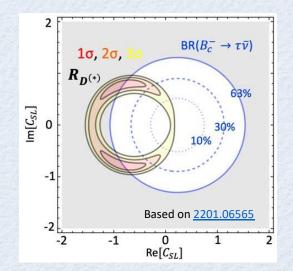
Bc lifetime:

excluded the scalar NP solution (SLL):

— Difference in experiment/theory is room for NP contribution hep-ph/9601249, 1611.06676

$$[au_{B_c}^{
m exp}pprox 0.5
m ps] ext{ vs. } [0.4
m ps < au_{B_c}^{
m th} < 0.7
m ps] \quad \Rightarrow \quad {
m Br}(B_c o {
m induced\ by\ NP}) < {
m 30\%} \ au
onumber \ au
onumbe$$

→ killed all the scalar NP solutions to the anomaly

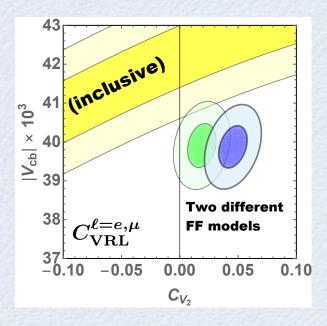

Bc lifetime:

excluded the scalar NP solution (SLL):

— Difference in experiment/theory is room for NP contribution hep-ph/9601249, 1611.06676

$$[au_{B_c}^{
m exp}pprox 0.5
m ps] ext{ vs. } [0.4
m ps < au_{B_c}^{
m th} < 0.7
m ps] \quad \Rightarrow \quad {
m Br}(B_c o {
m induced\ by\ NP}) < {
m 30\%} \over au
olimits$$

- → killed all the scalar NP solutions to the anomaly
- The present calculation (OPE) is sensitive to charm mass input
 - → 1811.09603 pointed out a conservative bound should be <60%
 - → 2105.02988 provides update concerning charm mass: th. could reach <1.0ps (<50%)
 - → theory calculation is not conclusive, need further update...

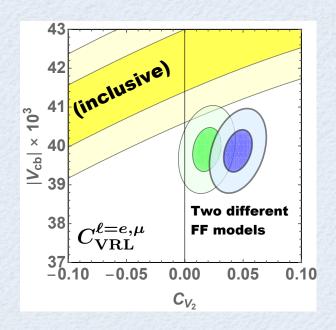


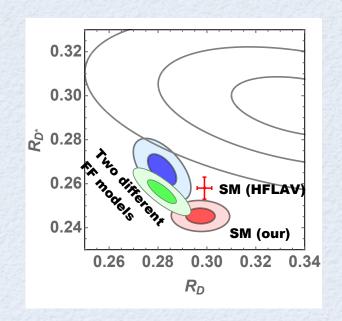
2201,06565

- This update significantly affects the SLL scenario
 - → Scalar type solution revived, but on the edge!
 - **→ Type-III charged Higgs is now viable!**
 - → Good news for several LQ scenarios as well

NP in the light lepton modes?

Simultaneous fit of FF + Vcb + NP in $B o D^{(*)} \mu
u \,, \; D^{(*)} e
u$



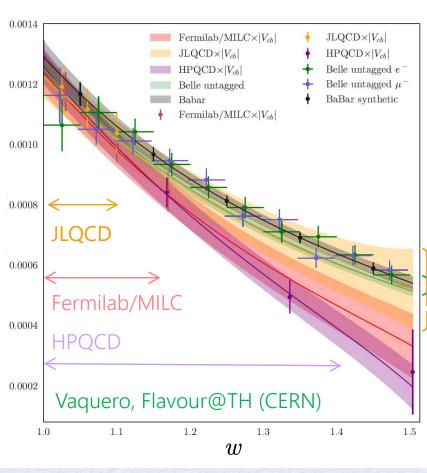

2004.10208 (RW)

- assuming LFU type NP in e/ μ : $C_X^e = C_X^\mu$
- taking Belle full angular data (2017,2018) & all available theory
- NP can be hidden behind the Vcb measurement
 - ightharpoonup possible size is < 5% of the "SM size" $\equiv 2\sqrt{2}G_FV_{cb}$

NP in the light lepton modes?

Simultaneous fit of FF + Vcb + NP in $B o D^{(*)} \mu
u \,, \; D^{(*)} e
u$

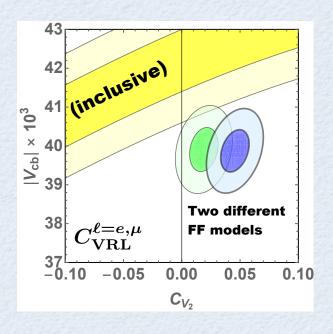
2004.10208 (RW)


- assuming LFU type NP in e/ μ : $C_X^e = C_X^\mu$
- taking Belle full angular data (2017,2018) & all available theory
- NP can be hidden behind the Vcb measurement
 - ightharpoonup possible size is < 5% of the "SM size" $\equiv 2\sqrt{2}G_FV_{cb}$
- Impact on RD(*), NP in denominator, is mild
 - → RD* increases while RD decreases in case of VRL type NP

Lattice results competition

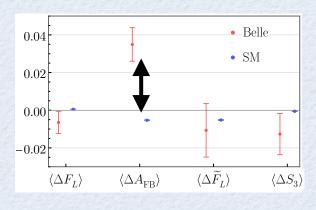
tension on $B \rightarrow D^*\ell v$

Vaquero [WG1+2] Tue 18:03 Colauhoun [WG2+3] Thu 18:50


$$\left| \eta_{EW} V_{cb} \, \mathcal{F}
ight|^{\, 2} \quad \mathcal{F}^{\, 2} \! \propto \! \left[2 rac{1 - 2wr + r^{\, 2}}{\left(1 - r
ight)^{\, 2}} \left\{ \! 1 + rac{w - 1}{w + 1} rac{R_{\! 1}^{\, 2}}{w + 1}
ight\} + \left\{ \! 1 + rac{w - 1}{1 - r} \left(1 - rac{R_{\! 2}}{1}
ight) \!
ight\}^{\, 2}
ight] \! h_{A_{\! 1}}^{\, 2} \; R_{\! 1} \! = \! rac{h_{V}}{h_{A_{\! 1}}}, \; R_{\! 2} \! = \! rac{h_{A_{\! 3}} + rh_{A_{\! 2}}}{h_{A_{\! 1}}} \; R_{\! 2} \! = \! rac{h_{A_{\! 3}} + rh_{A_{\! 2}}}{h_{A_{\! 1}}} \; R_{\! 2} \! = \! rac{h_{A_{\! 3}} + rh_{A_{\! 2}}}{h_{A_{\! 1}}} \; R_{\! 2} \! = \! rac{h_{V}}{h_{A_{\! 1}}} \; R_{\! 2} \! = \! rac{h_{V}$$

- (0) Belle and BaBar data
- 1) Fermilab/MILC : steeper slope?
 - + χ^2 /dof ~ 1.5 to fit w/ exp data
- 2 HPQCD : even steeper slope!
 - + siginificant tension with exp $(\ell=e, \mu)$ at medium/large w
 - $+ |V_{cb}| = 44.2(1.8) \times 10^{-3}$ from total Γ
- JLQCD: good consistency w/ exp
- tension on R_2 (?) [Belle 2301.07529, Jung Flavour@TH]
- \bigcirc small recoils [JLQCD, Fermilab/MILC] \Leftrightarrow larger ap [HPQCD]
- \Rightarrow "safe" extension to large w: JLQCD; Fermilab/MILC $a^{-1} \sim 6.6$ GeV

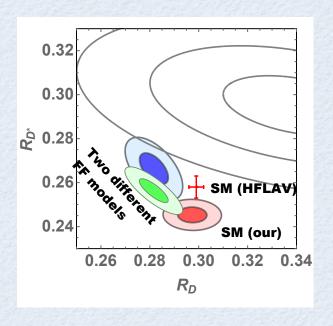
NP in the light lepton modes?


(1) Simultaneous fit of FF + Vcb + NP in $B o D^{(*)} \mu u \,, \; D^{(*)} e u$

2004.10208 (RW)

- assuming LFU type NP in e/ μ $C_X^e = C_X^\mu$
- taking Belle full angular data (2017,2018) & all available theory
 - → processes usually used to measure Vcb
- NP can be hidden behind the Vcb measurement
 - ightharpoonup possible size is < 5% of the "SM size" $\equiv 2\sqrt{2}G_FV_{cb}$
- Impact on RD(*), NP in denominator, is mild
 - → RD* increases while RD decreases in case of VRL type NP

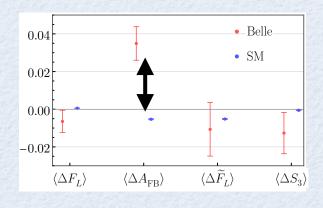
(2) New anomaly in angular obs. $\Delta A_{\rm FB} = A_{\rm FB}(D^*\mu\nu) - A_{\rm FB}(D^*e\nu)$



2104.02094, 2203.07189

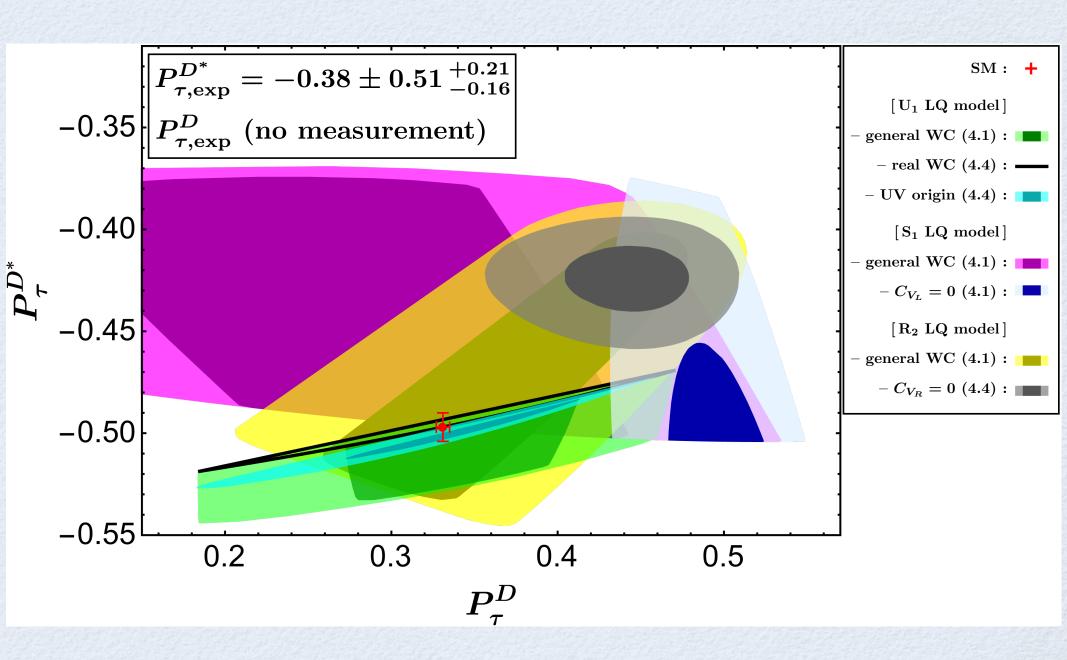
- using Belle 2018 data, angular asymmetries can be constructed
- "anomaly" was observed in the FB asymmetry between e/µ
 - → Single NP operators difficult / Tuned NP couplings needed
 - ⇒ Impact on RD(*) is very limited since Br(e/µ) = 1 ± 0.01

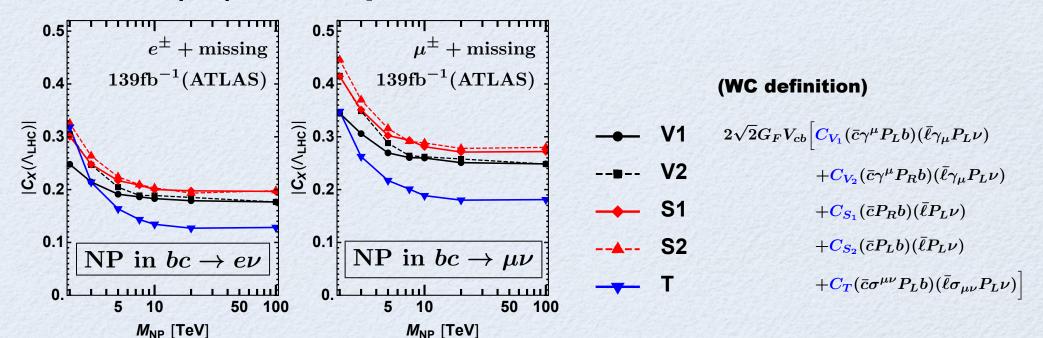
NP in the light lepton modes?


(1) Simultaneous fit of FF + Vcb + NP in $B o D^{(*)} \mu u \,, \; D^{(*)} e u$

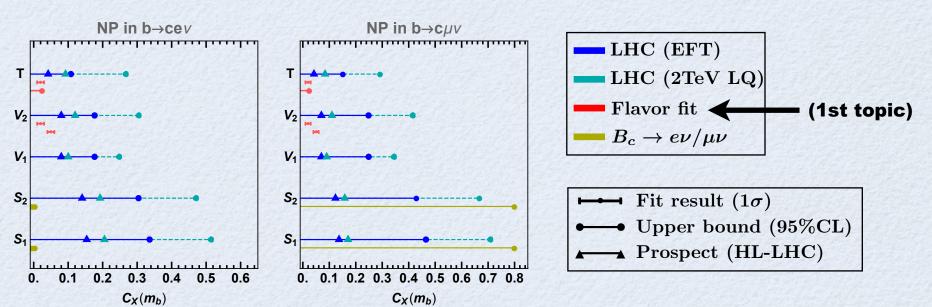
2004.10208 (RW)

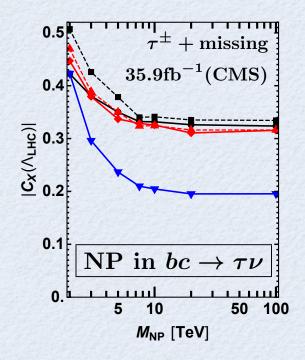
- assuming LFU type NP in e/ μ $C_X^e = C_X^\mu$
- taking Belle full angular data (2017,2018) & all available theory
 - → processes usually used to measure Vcb
- NP can be hidden behind the Vcb measurement
 - ightharpoonup possible size is < 5% of the "SM size" $\equiv 2\sqrt{2}G_FV_{cb}$
- Impact on RD(*), NP in denominator, is mild
 - → RD* increases while RD decreases in case of VRL type NP


(2) New anomaly in angular obs. $\Delta A_{ m FB} = A_{ m FB}(D^*\mu u) - A_{ m FB}(D^*e u)$


2104.02094, 2203.07189

- using Belle 2018 data, angular asymmetries can be constructed
- "anomaly" was observed in the FB asymmetry between e/µ
 - → Single NP operators difficult / Tuned NP couplings needed
 - ⇒ Impact on RD(*) is very limited since $Br(e/\mu) = 1 \pm 0.01$


Tau Polarization for LQ scenarios

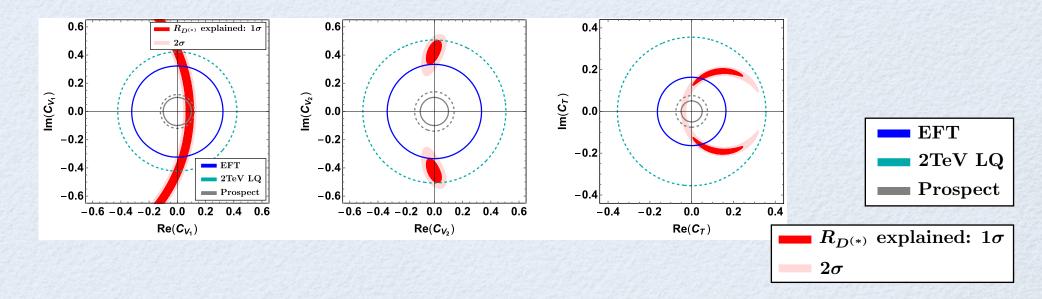

Mediator (LQ) mass dependence:

Impact on Flavor (Vcb+NP fit):

The tau case:

EFT)
$$|C_T|_{LHC} < 0.20 \ (95\%CL)$$

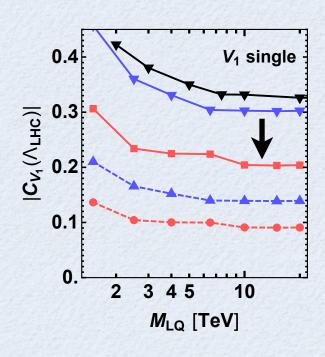
$$\leftrightarrow \ | extbf{C_T}|_{R_{D^{(*)}}} pprox |0.15 + i\,0.19| = 0.24$$

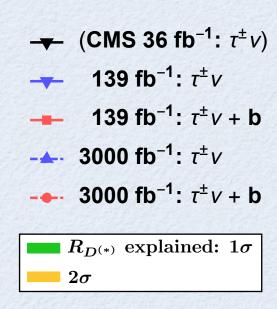

LQ)
$$|C_T|_{LHC} < 0.42 \ (95\%CL)$$

(Summary)

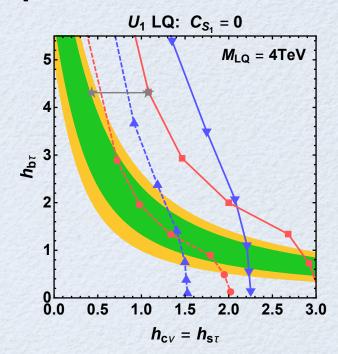
2TeV LQ: EFT bound is 40~100% overestimated

5TeV LQ: 10~20% overestimated


Impact on Flavor (RD(*) anomaly):



+ b-jet tag


(BG/Signal events generated & simulated: details skipped)

Improvement 1:

Improvement 2:

Observations:

- +b search improves the bound by ~50%
- +b search at HL_LHC can achieve Cx~0.1, i.e. 10% NP effect
- Given the LQ mass, the two couplings (not combination) are constrained