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Introduction:
sign problem and doubling problem
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Monte Carlo method and sign problem

The Monte Carlo method is one of the most successful
numerical method for quantum systems.

Ô
�
T = tr

�
Ôexp

�−Ĥ/T�� � tr�exp�−Ĥ/T��
= (Eliminate operator by inserting completeness relations)

=
∫
DφOexp(−SE)

�∫
Dφ exp(−SE)

The expectation value can be approximated by sampling
configurations with the probability exp(−SE).

Sign problem� �
If SE is complex, exp(−SE) cannot be regarded as a proba-
bility. Hence, the Monte Carlo method is not applicable.� �
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Sign problem at finite density
Grand canonical partition function of Dirac fermion system

(L, β, μ) = tre−βH+μ
∫
dψ†ψ

=
∫
DA det

�
Dμγμ +m + μγ0

�
e−Sg

Dμ is anti-hermitian, whereas μ is hermitian� �
γ5
�
Dμγμ +m + μγ0

�†γ5 = γ5
�−Dμγμ +m + μγ0

�
γ5

= Dμγμ +m − μγ0
=⇒

det
�
γμDμ +m + μγ0

�∗ = det
�
γμDμ +m − μγ0

�
� �
Solutions to the sign problem (each has pros and cons):

Tensor network method

Complex Langevin method

Quantum computing
...
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Fermion doubling problem
Naive lattice Dirac fermion

SE =
d−1
2

∑
,μ

ψγμψ+μ̂ − ψ+μ̂γμψ +md
∑

ψψ

¬
ψα,ψβ,y

¶
=
∫ π/

−π/
ddp

(2π)d

�− γμp̂μ +m
�
αβ∑

μ p̂
2
μ +m2

ep(−y),

p̂ :=
1


sin

�
pμ

�
=⇒ The number of poles is 2d.

Nielsen-Ninomiya theorem Nielsen and Ninomiya, ’81� �
Under some reasonable conditions (locality, hermiticity,...),
any lattice fermion with exact chiral symmetry has doublers,
canceling out the chiral anomaly in the continuum:

∂μj
μ
5 =

g2

32π2
εμναβFμνFαβ,

jμ5 = ψγ5γμψ� �3 /27



Bosonization

In lattice Monte Carlo method, most difficulties are related to
fermion, not boson.

For 1 + 1 dimensions, fermion can be described by boson:
Field-theoretical bosonization Coleman, Mandelstam, . . .� �
Present a bosonic model in path-integral rep. and prove the
equivalence with the fermionic model using field-theoretical
techniques
key words: infinite size system, Green’s function, compact boson, . . .� �
Constructive bosonization Mattis, Lieb, Schotte, Haldane,. . .� �
Construct bosonic operators from fermion operators one by
one paying attention to the Fock space
key words: finite size system, particle-hole excitation, non-compact boson, . . .� �

Does bosonization solve the difficulties related to fermion?
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Content and references
In this talk� �
I present a possible solution to the sign problem and fermion
doubling problem in 1 + 1 dimensions by using the con-
structive bosonization, and introduce its application to the
Schwinger model.� �

Review of constructive bosonization:
J. von Delft and H. Schoeller, Annalen Phys. 7 (1998) 225.

Constructive bosonization of Schwinger model:
N. S. Manton, Annals Phys. 159 (1985) 220.

J. E. Hetrick, Y. Hosotani, Phys.Rev.D 38 (1988) 2621.

S. Iso, H. Murayama, PTP, 84 (1990) 142.

Field-theoretic approach to lattice chiral theory in 1 + 1 dims:
M. DeMarco, E. Lake, X. Wen, arXiv:2305.03024.

E. Berkowitz, A. Cherman, T. Jacobson, PRD 110 (2024) 014510.

O. Morikawa, S. Onoda, H. Suzuki, PTEP 2024 (2024) 6, 063B01. 5 /27



Outline

Introduction: sign problem and doubling problem

Canonical partition function and constructive bosonization

Bosonized Schwinger model and lattice discretization

Monte Carlo study of the phase diagram of the Schwinger
model at θ = π

Summary and future study
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Canonical partition function
and constructive bosonization
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Why not use the canonical ensemble?
Grand canonical ensemble� �

(L, β, μ) := tre−βH+μ
∫
dψ†ψ =

∫
DψDψe−SE+μ

∫
d2ψ†ψ

Finite density systems can be described by just adding the
chemical potential term to the Euclidean action.
But, it can cause the sign problem.� �
Canonical ensemble� �

Z(L, β,N) := trHN e
−βH = path-integral representation?

The sign problem would not happen.
But, treating the trace over the N particle space is generally
difficult. ← would not be the case in 1+1 dims!� �
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Structure of fermionic Fock space
Let us consider a fermionic system in a finite spatial length L.

Annihilation/creation operators of one-component fermion� �
ψ() =: L−1/2

∞∑
q=−∞

e− qcq, q =
2π

L
nq

�
ψ(), ψ†(y)

	
= δ( − y) =⇒ ¦

cq, c†k
©
= δq,k� �

N-particle reference states� �
|0〉0 := c†0c

†
−1c

†
−2 · · · |state of nothing〉

|1〉0 := c†1 |0〉0 = c†1c
†
0c

†
−1c

†
−2 · · · |state of nothing〉

|−1〉0 := c0 |0〉0 = c†−1c
†
−2 · · · |state of nothing〉

...� �
Fock space =

∑
⊕N

HN, HN = {|N〉0 ,
particle-hole excited states︷ ︸︸ ︷

c†kck′ |N〉0 , c†kc†qck′cq′ |N〉0 , . . .}
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Structure of N-particle space HN

Collective particle-hole excitation operator� �
b†q :=

√√√2π

Lq

∑
k

c†k+qck, bq := − 
√√√2π

Lq

∑
k

c†k−qck for q > 0�
bq, bk

�
= 0,

�
b†q, b

†
k

�
= 0,

�
bq, b†k

�
= δq,k Mattis and Lieb, ’65� �

Completeness of bosonic Fock space� �
Trivially, ∀ ƒ 6= 0, ƒ (b†) |N〉0 ∈ HN, or ƒ (b†) |N〉0 = 0
Non-trivially, in one spatial dimension, Haldane, ’81

N-particle space:HN = spn
¦|N〉0 , b†q |N〉0 , b†qb†k |N〉0 , . . .©� �

Bosonic representation of canonical partition function:

Z(L, β,N) := trHN e
−βH = trspn

¦|N〉0,b†q |N〉0,...© e−βH
Can we write the Hamiltonian in the bosonic language? 8 /27



Bosonization of one-component fermion
Bosonization identity (valid in the full Fock space

∑
⊕NHN)� �

ψ() =
1p
L
F̂ e−  2πL N̂ e


∑

q>0
1p
nq

eqb†q e

∑

q>0
1p
nq

e− qbq

F̂ : Klein factor (works to decrease the fermion number)

N̂ :=
∑
k

NFc†kck =
∑
k>0

c†kck +
∑
k≤0

ckc†k

� �
Hkinetic =

∫
dψ†∂ψ =

excitation energy︷ ︸︸ ︷
2π

L

∑
q>0

nqb†qbq +

base energy︷ ︸︸ ︷
2π

L

N∑
nq=1

nq

ψ†ψ =

fluctuating part︷ ︸︸ ︷
1

2π
∂

−∑
q>0

1p
nq

�
e− qbq + eqb†q

�+N
L
=⇒

∫
dψ†ψ = N
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Bosonization of Dirac fermion
One Dirac fermion is made from one left-handed and one
right-handed fermion ψ = (ψL, ψR)>.

ψL() = L−1/2
∑
q
e− qcL,q ←→ bL,q>0, F̂L, N̂L

ψR() = L−1/2
∑
q
e+ qcR,q ←→ bR,q>0, F̂R, N̂R

Fourier components of the scalar field φ() and its conjugate
momentum π() are constructed from bL,q, b

†
L,q, bR,q, b

†
R,q, q > 0

as

φq := −
√√√ L

4πnq

�
bL,q − b†R,q

�
, φ−q := φ†q for q > 0,

πq := 

√√πnq

L

�
bL,q + b†R,q

�
, π−q := π†q for q > 0.�

φq, π†k
�
= δqk, other commutators are all zeros
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Bosonization formulae for Dirac fermion

Hkinetic =
∫
d − ψγ1∂ψ

=

bosonic kinetic term without zero mode︷ ︸︸ ︷
1

2

∑
q 6=0

π†qπq + q2φ†qφq +
π

2L

�
(NL + NR + 1)2 + (NL − NR)2

	

ψγ0ψ =
1p
π
∂

 1p
L

∑
q 6=0

e− qφq

+ NL + NR

L
=⇒

∫
dψγ0ψ = NL + NR

ψγ1ψ = − 1p
π

 1p
L

∑
q 6=0

e− qπq

− NL − NR

L
=⇒

∫
dψγ1ψ = −(NL − NR)

Z(L, β,N) := trNe−βH, trace should be taken over direct sum
space of all bosonic Fock space whose fermion number is N:∑

⊕NL

ƒNL(φq, φ
†
q) |NL, N − NL〉0 ∈

∑
⊕NL

HNL,N−NL .
11 /27



Bosonized Schwinger model and
lattice discretization
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Schwinger model (QED in 1 + 1 dimensions)

SE[Aμ, ψ, ψ]g,m,θ =
∫
d2

�
1

4
FμνFμν + ψ( /∂ + g /A +m)ψ

�
+ θQ,

Q :=
∫
d2

g

4π
εμνFμν =

∫
d2

g

2π
E ∈ Z.

Confinement
Chiral anomaly: ∂μj

μ
5 =

g
πE

θ term → sign problem
At m = 0, equivalent to free scalar theory of mass g/

p
π
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Massless Schwinger model in Coulomb gauge
Hamiltonian in the Coulomb gauge ∂A1 = 0� �

H =
L

2

�
Etr +

gθ

2π

�2
+
∫
d − ψγ1

�
∂ + gA1

�
ψ +

1

2

�
∂A0

�2
Etr := ∂L/∂Ȧ1 = Ȧ1 − θg

2π
,

�
A1, Etr

�
=



L
,

Large gauge transformation: A1 → A1 +
2π

gL
Z� �

Gauss’s law: ∂2A
0 = −gψ†ψ = − gp

π
∂

 1p
L

∑
q 6=0

e− qφq

− g
NL + NR

L

General solution: ∂A0 = − gp
π

 1p
L

∑
q 6=0

e− qφq

−
����������XXXXXXXXXX
g
NL + NR

L
 + const

∫ L/2

−L/2
d∂A0 = 0 =⇒ const = 0

∂A0
����
=L/2

− ∂A0
����
=−L/2

= 0 =⇒ NL + NR = 0
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Bosonized massless Schwinger model

H =
L

2

�
Etr +

gθ

2π

�2
+
1

2

∑
q 6=0

π†qπq + q2φ†qφq,

+
π

2L

Large gauge tr. invariant︷ ︸︸ ︷�
NL − NR +

L

π
gA1

�2
+
1

2

∑
q 6=0

�
gp
π

�2
φ†qφq

Through the following identifications

φ0 = −
p
πL

g
Etr, π0 =

√√π

L

�
NL − NR +

L

π
gA1

�
, [φ0, π0] = ,

we find

H =
∫
d

1

2
π2 +

1

2
(∂φ)2 +

1

2

�
gp
π

�2�
φ +

θ

2
p
π

�2
,

φ = −
p
π

g
E.
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Chiral anomaly in the bosonized form
Bosonized vector and chiral currents and the Hamiltonian� �
jμ = ψγμψ =


1p
π
∂
�
1p
L

∑
q 6=0 e− qφq

�
= 1p

π
∂φ

− 1p
π

�
1p
L

∑
q 6=0 e− qπq

�− NL−NR+
L
π gA

1

L = − 1p
π
π

jμ5 = ψγ5γμψ =

¨ 1p
π
π μ = 0

− 1p
π
∂φ μ = 1

H(m = 0, θ = 0) =
∫
d

1

2
π2 +

1

2
(∂φ)2 +

g2

2π
φ2

� �
Time evolution

π̇ = − [π,H] = ∂2φ −
g2

π
φ

The conservation law of the chiral current is broken as

∂μj
μ
5 =

1p
π

�
π̇ − ∂2φ

�
= − g

π

gp
π
φ =

g

π
E.

Naive lattice discretization keeps it with no O() correction.15 /27



Lattice bosonized Schwinger model
Partition function of lattice bosonized Schwinger model

Z(L, β,N = 0) =
∫
Dφ exp(−SE), ∂μƒ := ƒ+μ̂ − ƒ,

SE =
Lτ−1∑
τ=0

L−1∑
=0

1

2
(∂τφ,τ)2 +

1

2
(∂φ,τ)2 +

(g)2

2π

�
φ,τ +

θ

2
p
π

�2
+ 2mψψ, ψψ = − eγ

2π3/2
ge2πΔltt(=0;g/

p
π;1/) cos

�
2
p
πφ
�

The lattice Feynman propagator in ψψ originates from bosonic
normal ordering for cos

�
2
p
πφ
�
. H. Ohata, JHEP 12, 007 (2023)

Advantages� �
Chiral anomaly is intact.
Low-cost configuration generation using heat-bath
method
Sign problem at finite θ is avoided.� �16 /27



Lattice chiral condensate at m = θ = 0 Ohata, ’23¬
ψψ

¶
ltt
= − eγ

2π3/2
ge2πΔltt(0;g/

p
π;1/) 
cos�2pπφ��free,Lτ

= − eγ

2π3/2
gexp

�−2π�Δltt(0;g/pπ; 1/)Lτ − Δltt(0;g/
p
π; 1/)

	�
.

VEV of chiral condensate is reproduced at any lattice spacing.
←→ Chiral anomaly is exactly preserved on a lattice.
Fast convergence to the continuum limit even at T 6= 0 17 /27



Monte Carlo study of the phase diagram
of the Schwinger model at θ = π

H. Ohata,
“Phase diagram near the quantum critical point in Schwinger model at θ = π:
analogy with quantum Ising chain,”

PTEP 2024, 013B02 (2024), arXiv:2311.04738.
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CP symmetry breaking at T = 0
Approximate effective potential θ = π:

V(φ) =
g2

2π
φ2 − eγ

2π3/2
mg cos

�
2
p
πφ − π

�
, φ/

p
π = E/g

' 1

2

�
gp
π

�
1 − pπeγm

g

��2
φ2 for φ ' 0

Correlation length diverges at mc/g ' 1/
�p

πeγ
�
= 0.317...

→ quantum critical point (QCP) Coleman, ’76

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.05

0.00

0.05

0.10

0.15

V(
)/g

2  a
t 

=

V( )/g2 2/2 0.16(m/g)cos (2 )

m/g = 0
m/g = 0.3
m/g = 1

phase diagram of Schwinger model at

QCP

first-order phase transition

Ising universality class

mc/g = 0.3335(2), ν = 1.01(1), β/ν = 0.125(5) Byrnes et al., ’02.
From Lee-Yang and Fisher zero analyses, Shimizu and Kuramashi, ’14

showed that the QCP belongs to the Ising universality class.
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Fate of CP symmetry at finite temperature
We can calculate the electric field

E

g
=

φp
π

directly, but...

/20.00
0.25

0.50
0.75

1.00

T/g 0.2
0.40.60.81.01.2

0.4
0.3
0.2
0.1

0.0
0.1
0.2
0.3
0.4

electric field at m/g = 0.50

0.3

0.2

0.1

0.0

0.1

0.2

0.3

E
/g

0.00 0.25 0.50 0.75 1.00
/2

0.4

0.2

0.0

0.2

0.4

E
/g

electric field vs  term at (T/g) 1 = 11.2
m/g = 0.0625
m/g = 0.1250
m/g = 0.2500
m/g = 0.5000

Is CP symmetry restored at very low temperatures or not?

I explore the phase diagram at θ = π combining the
perspective of universality with the quantum Ising chain. 19 /27



Universality class of the quantum Ising chain

Universality� �
Models sharing the same symmetry pattern and dimension-
ality exhibit qualitatively the same behaviors near the criti-
cal point.� �
Quantum Ising chain: simplest model with Z2 symmetry� �

H = −J
∑


�
σz ⊗ σz+1 + gσ

�
All eigenstates are obtained by appling the Jordan-Wigner tr.
and diagonalizing the Hamiltonian using the Bogoliubov tr.
Lieb, Schultz, and Mattis, ’61; Pfeuty, ’70

ferromagnetic phase � �
20 /27



Universal scaling function Sachdev, ’96; Oshikawa, ’19

C() =
¬
σz0σ

z


¶ →∞−−−→ Z(T/g)1/4G(Δ/T)exp
�
− T

c
F(Δ/T)

�

F(s) = |s|Θ(−s) + 1

π

∫ ∞

0
dy ln coth

�
y2 + s2

�1/2
2

lnG(s) =
∫ 1

s

dy

y

�dF(y)
dy

�2
− 1

4

+ ∫ ∞

1

dy

y

�
dF(y)

dy

�2
Here, Δ = r(gc − g), and c, Z, r are non-universal constants.

4 2 0 2 4
s

0

1

2

3

4

5
universal scaling functions

FI(s)
GI(s)

Correlation length

ξ =
c

T
F−1 (Δ/T)

=


c
q

π
2ΔTe

Δ/T , Δ� T,
4c
πT , |Δ| � T,
c
|Δ| , Δ� −T.
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Phase diagram of quantum Ising chain
At T = 0

ferromagnetic phase 

At T > 0, the correlation length is always finite. =⇒
The system is always in a paramagnetic phase.

ferromagnetic phase 

phase diagram of quantum Ising chain

quantum critical

quantum
disordered

thermally
disordered

QCP

Correlation length

ξ =
c

T
F−1 (Δ/T)

=


c
q

π
2ΔTe

Δ/T , Δ� T,
4c
πT , |Δ| � T,
c
|Δ| , Δ� −T.
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Phase diagram of Schwinger model at θ = π

ferromagnetic phase 

phase diagram of quantum Ising chain

quantum critical

quantum
disordered

thermally
disordered

QCP

CP broken phase 

phase diagram of Schwinger model at

QCP

quantum critical

thermally
disordered

quantum
disordered

How to establish the conjectured phase diagram� �
1 At fixed temperature, calculate correlation functions at
various m, and extract ξ and A through fit

C()m = 〈EE0〉m /g2 = 〈φφ0〉m /π
→∞−−−→ Am exp(−/ξm)

2 Fit {ξm},{Am} using the scaling functions and
determine c, Z, r

3 Check if data at different temperatures regress to the
same scaling functions� �23 /27



1. fit to the correlation function
Calculate correlation functions near the QCP

T = 0, mc = 0.3335(2) Byrnes et al., ’02

using a sufficiently large and fine lattice of
g = 0.2, L × Lτ = 1792 × 112.

0 5 10 15 20 25 30 35
xg

10 4

10 3

10 2

10 1

100

101

C(
x)

correlation function at ag = 0.2, Lx × L = 1792 × 112
m/g = 0.20, ( g) 1 = 0.244(19), A = 0.049(18), 2/dof = 0.99
m/g = 0.26, ( g) 1 = 0.1272(22), A = 0.0523(19), 2/dof = 0.66
m/g = 0.34, ( g) 1 = 0.03109(98), A = 0.0992(14), 2/dof = 1.34
m/g = 0.44, ( g) 1 = 0.00079(17), A = 0.15657(39), 2/dof = 1.50

Fit the long-distance part using C() = Am exp(−/ξm)
24 /27



2. fit to the correlation length and amplitude
Fit the correlation length and amplitude using

(ξg)−1 = (T/cg)F(r(m −mc)/T),

A = Z(T/g)1/4G(r(m −mc)/T)

and determine non-universal constants Z, c, r

0.225 0.250 0.275 0.300 0.325 0.350 0.375 0.400
m/g

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

(
g)

1
=

(T
/c

g)
F I

(r(
m

m
c)/

T)

correlation length vs fermion mass
c = 0.978(11), r = 1.631(22), 2/dof = 1.74
T/g = 0.0446

0.225 0.250 0.275 0.300 0.325 0.350 0.375 0.400
m/g

0.04

0.06

0.08

0.10

0.12

0.14

A
=

Z(
T/

g)
1/

4 G
I(r

(m
m

c)/
T)

amplitude vs fermion mass
Z = 0.2435(16), r = 1.593(46), 2/dof = 0.90
T/g = 0.0446

Z = 0.2435(16), c = 0.978(11), r = 1.593(46)
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3. regression to the scaling functions
Rescale the correlation length and amplitude

(ξg)−1 = (T/cg)F(r(m −mc)/T), A = Z(T/g)1/4G(r(m −mc)/T)

using the non-universal constants and compare them to the
scaling functions F , G:

4 2 0 2 4
/T

0

1

2

3

4

5

6

F I

universal scaling function for correlation length
analytic
T/g = 0.0446
T/g = 0.0893

4 2 0 2 4
/T

0.4

0.6

0.8

1.0

1.2

1.4

G
I

universal scaling function for amplitude
analytic
T/g = 0.0446
T/g = 0.0893

The Schwinger model at θ = π shares the same asymptotic
form as the quantum Ising chain near the QCP.
=⇒
Same phase diagram near the QCP!
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Summary and outlook
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Summary and outlook
Summary� �

For 1 + 1 dimensional fermionic systems, constructive
bosonization would provide a natural bosonic
representation of the canonical partition function
Z(L, β,N), which enables us to evade the sign problem.
Chiral anomaly is preserved in the lattice discretization
at any lattice spacing in the Schwinger model.
As a bonus, bosonization can also be used to evade the
sign problem at finite θ angle.
Phase diagram of the Schwinger model at θ = π in the
temperature and mass plane was established.� �

Future study� �
Application to nontrivial finite density systems
Application to chiral gauge theories, e.g., 3450 model� �
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Backup
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Fermion normal ordering
For the fermion creation and annihilation operators, we define
the fermion normal ordering as

all ck, k > 0 and c†k, k ≤ 0 to the right.

For example,

N̂ :=
∑
k

Nc†kck

=
∑
k>0

c†kck +
∑
k≤0

ckc†k

=
∑
k>0

c†kck +
∑
k≤0

c†kck +
∑
k≤0

=
∑
k

�
c†kck − 0 〈0|c†kck |0〉0

�

N̂ measures the number of fermions relative to the Fermi sea.
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Bosonization of fermion on a lattice?

In the constructive bosonization,
unbounded momentum modes are crucial for

�
bp, b†q

�
= δpq.

δ( − y) =
∫ ∞

−∞
dp

2π
ep(−y)

=
1

L

∞∑
nk=−∞

ek, k = 2πnk /L

δ,y =
∫ π/

−π/
dp

2π/
ep(−y)

=
1

L

∑
p=p̂,...,Lp̂

ep(−y), p̂ = 2π/(L)

On a lattice, no Fourier expansion matches the requirement.
Hence constructive bosonization would be impossible.
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Large gauge tansformation
U(1) gauge transformation: A1()→ A1() + 1

g∂θ()
Gauge transformation by θ() is compatible with the Coulomb gauge
condition ∂A1 = 0 only when ∂2θ() = 0.
Thus, there remains a nontrivial gauge transformation

θ() =
2π

L
n, n ∈ Z \ {0}

which is not smoothly connected to θ() = 0.
Large gauge transformation� �

A1 → A1 +
2π

gL
n, ψ()→ e

2π
L nψ(),

cL,k =
1p
L

∫
dekψL()→ cL,k+n, cR,k → cR,k−n

NL :=
∑
k

NFc
†
L,kcL,k → NL − n, NR → NR + n

NL + NR, NL − NR +
gL

π
A1, bq, φ(), π() are invariant.� �
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Generating Monte Carlo configurations
Heat bath algorithm� �
Start with an initial field configuration

�
φ,τ

	
1 focus on φ,τ at some site (, τ)
2 update φ,τ while fixing the rest (heat bath)
3 repeat 1 and 2 for all sites

Repeating the sweep many times, the field configuration�
φ,τ

	
starts to distribute with P

��
φ,τ

	�
∝ exp

�−SE��φ,τ	��.� �
P(φ,τ) ∝ exp

−2(g)
 
φ,τ − φ,τ

(g)

!2
× exp

�
eγ

2π3/2
(m/g)(g)2C(g) cos

�
2
p
πφ,τ − θ

��
,

φ,τ :=(φ,τ+1 + φ,τ−1 + φ+1,τ + φ−1,τ)/4, (g) := 1 + (g)2/4π.

Generate a Gaussian random number, apply the rejection sampling
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Chiral symmetry in Nƒ flavor Schwinger model

At m = 0, the action has the chiral symmetry

U(1)V × U(1)A × SU(Nƒ )V × SU(Nƒ )A.

U(1)A is explicitly broken by the chiral anomaly.

Spontaneous continuous symmetry breaking is prohibited in
relativistic 1 + 1 dims models. Coleman, ’73

Nƒ ≥ 2¬
ψψ

¶ 6= 0 =⇒ spontaneous SU(Nƒ )A symmetry breaking,
which contradicts Coleman’s argument.
Nƒ = 1
We don’t have SU(Nƒ )A symmetry from the beginning.
=⇒¬
ψψ

¶ 6= does not contradict Coleman’s argument.
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Chiral condensate at m> 0, T = 0

The chiral condensates at (T/g)−1 = 11.2 obtained in
H. Ohata, JHEP 12, 007 (2023), arXiv:2303.05481.,

compared with that obtained by the tensor network method
m/g This work Bañuls et al. This work / Bañuls et al.

0.0625 0.11506(91) 0.1139657(8) 1.0096(80)
0.125 0.09249(66) 0.0920205(5) 1.0051(72)
0.25 0.06629(62) 0.0666457(3) 0.9947(93)
0.5 0.04207(37) 0.0423492(20) 0.9935(87)
1 0.02385(22) 0.0238535(28) 0.9997(93)

Bañuls et al., Phys. Rev. D 93, 094512 (2016).
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Check of lattice artifacts in correlation function

0 5 10 15 20 25 30
xg

10 1

C(
x)

correlation function at m/g = 0.32
( g) 1 = 0.0473(15), A = 0.0845(24), 2/dof = 1.14
( g) 1 = 0.0457(20), A = 0.0795(31), 2/dof = 1.07
( g) 1 = 0.0468(17), A = 0.0874(24), 2/dof = 1.75
ag = 0.2, Lx × L = 1792 × 112
ag = 0.2, Lx × L = 896 × 112
ag = 0.1, Lx × L = 3584 × 224

The correlation lengths and amplitudes are all consistent
within the error bars.

27 /27



Scaling vs direct numerical result at T = 0

CP broken phase 

phase diagram of Schwinger model at

QCP

quantum critical

thermally
disordered

quantum
disordered

From the analytic form of the
correlation function, the critical
behaviors of the energy gap
and electric field can be
obtained.

0.0 0.1 0.2 0.3 0.4 0.5
m/g

0.0

0.1

0.2

0.3

0.4

0.5

E/
g

energy gap vs fermion mass at zero temperature
( g) 1 = (r/c)(mc/g m/g)
Byrnes et al., '02

0.0 0.2 0.4 0.6 0.8 1.0
m/g

0.0

0.1

0.2

0.3

0.4

0.5

|E
|/g

electric field vs fermion mass at zero temperature

| E |/g = Z1/2r1/8(m/g mc/g)1/8

Byrnes et al., '02

At T = 0, scaling holds well in a wide region: m/g ∈ [0,1].
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Nƒ = 2 Schwinger model at finite θ
preliminary result:

0.00 0.25 0.50 0.75 1.00
/2

0.000

0.005

0.010

0.015

0.020

(f(
)

f(0
))/

g2

free energy density vs  term at m/g = 0.1

mass perturbation
ag = 0.2, Lx = 112, L = 112
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