Preprint available arXiv:2410.09485 (HPK, Shinichiro Akiyama, Synge Todo)

Grassmann tensor renormalization group approach to (1+1)-dimensional two-color QCD at finite density

KEK-Theory Workshop 2024

11th December 2024

Ho Pai, KWOK

TN approach to lattice field theories

- **Lattice field theories with finite density or a theta term suffer from the sign problem. Tensor network (TN) method is regarded as a promising solution because it does not rely on any sampling procedure.**
- **TN studies on (1+1)-D QCD have been active recently, as the first step towards (3+1)-D QCD**

Hamiltonian approach

[S. Kuhn+, JHEP 07 (2015) 130] [P. Silvi+, Quantum 1 (2017) 9] [M. C. Banuls+, PRX 7 (2017) 041046] [P. Sala+, PRD 98 (2018) 034505] [P. Silvi+, PRD 100 (2019) 074512] [M. Rigobello+, 2308.04488] [H. Liu+, 2312.17734] [T. Hayata+, JHEP 07 (2024) 106]

Lagrangian approach

[J. Bloch & R. Lohmayer, Nucl. Phys. B 986 (2023) 116032] [M. Asaduzzaman+, JHEP 05 (2024) 195]

Tensor Renormalization Group (TRG) [Levin, M., & Nave, C. P. (2007). PRL, 99(12), 120601]

- ✓ **Can achieve a large lattice efficiently**
- ✓ **Can describe fermions directly by incorporating Grassmann variables (Grassmann TRG)**

TN representation of partition function Coarse-grained TN

What do we study?

• **(1+1)-D two-color QCD with staggered fermions on a square lattice**

What we calculate with TRG

$$
Z = \int \mathcal{D}U \mathcal{D}\chi \mathcal{D}\bar{\chi} e^{-S}
$$

 $S = S_f + S_q + S_\lambda$

Parameters: m, β, μ, λ

Fermion hopping term + mass term

Wilson's gauge action

Diquark source term

$$
S_{\lambda} = \frac{\lambda}{2} \sum_{n} \left[\chi^{T}(n) \sigma_{2} \chi(n) + \bar{\chi}(n) \sigma_{2} \bar{\chi}^{T}(n) \right]
$$

$$
\langle \chi \chi \rangle \equiv \frac{1}{2V} \int \mathcal{D}U \mathcal{D} \chi \mathcal{D} \bar{\chi} \sum_{n} \left(\chi^{T} \sigma_{2} \chi + \bar{\chi} \sigma_{2} \bar{\chi}^{T} \right) e^{-S}
$$

• **Phase structure of the (3+1)-D theory**

[Y. Nishida+, Phys. Rept. 398 (2004) 281–300]

Mass = 0.02

(3+1)-D infinite coupling two-color QCD with staggered fermions

Our proposal

- Two-color QCD with staggered fermion has the global $U_V(1) \times U_A(1)$ symmetry at a finite μ , in the vanishing λ limit and chiral limit ($m \to 0$)
- **In higher dimensions, spontaneous symmetry breaking is possible and order parameter may have a finite value**
- **However, there is NO spontaneous breaking of continuous global symmetry in two dimensions.**

 $\lim_{m\to 0} \lim_{V\to\infty} \langle \bar{\chi}\chi \rangle = 0$ $\qquad \lim_{\lambda\to 0} \lim_{V\to\infty} \langle \chi\chi \rangle = 0$

- Therefore, we explicitly break the $U_A(1)$ symmetry with a finite m , and the $U_V(1)$ symmetry with a finite λ
- **Under this setting, we compute the expectation value of quark number density, chiral condensate, and diquark condensate with the TRG approach**

- **1. Construction of the TN representation (Discretization of the gauge group integration)**
- **2. The bond dimension of the tensors is inevitably large (How to handle this in practical computation)**

Tensor network representation

• **The fermionic partition function can be expressed as the trace of a Grassmann tensor network by rewriting each hopping term into an integral of a pair of N -component auxiliary Grassmann fields**

[Akiyama, S., & Kadoh, D., JHEP, 2021(10), 1-16]

In the infinite coupling limit, any link variable appears in the expression of only one local tensor, and the gauge group integration can be performed exactly.

• **At finite couplings, the gauge group integration is dicretized by a summation with group elements sampled uniformly from the group manifold**

$$
\int \mathrm{d}U f(U) \simeq \frac{1}{K} \sum_{i=1}^{K} f(U_i)
$$

on a square lattice [Fukuma, M.+, PTEP, 2021(12),123B03]

Partition function of pure Yang-Mills

 $G_{ijkl} \equiv \frac{1}{K^2} e^{(\beta/N) \operatorname{Re} \operatorname{Tr} (U_i U_j^\dagger U_k^\dagger U_l)}$

• **We then combine the Grassmann tensor F and the real-valued tensor G**

Initial tensor compression

- **We use bond-weighted tensor renormalization group to coarse-grain the tensor network and reach the thermodynamic limit**
- **The choice of bond dimension cutoff D in TRG algorithms depends on the bond dimension of initial tensors. In our case (two-color i.e., N=2), the initial bond dimension is 16K !**
- **Compression of initial tensors is needed before TRG: insert a pair of squeezers, which acts as a good approximation of identity, on every bond of the tensor network**

• **The insertion of squeezers is equivalent to doing a truncated SVD on the following contraction of initial tensors**

How to determine the bond dimension after compression (how many singular values are kept)?

Efficiency of compression

Initial bond dimension

\overline{r}					compression rate
	224	224	224	224	100%
0.99999	148	148	143	143	17.8%
0.99995	122	122	118	118	8.23%
0.9999	110	110	105	105	5.30%
0.9995	80	80	79	79	1.59%
0.999	70	70	67	67	0.874%
0.99	35	35	33	33	0.0530%

 $m = 0.1$ $\beta = 1.6$ $\mu = 0.4$ $\lambda = 0$ $K = 14$ $m = 0.1$ $\beta = 0.8$ $\mu = 0.4$ $\lambda = 0$ $K = 14$

Free energy density:

 $f = \ln Z/V$ What we calculate directly with TRG

Quark number density: Chiral condensate: Diquark condensate: Diquark condensate:

$$
\langle n \rangle = \frac{\partial f}{\partial \mu} \simeq \frac{f(\mu + \Delta \mu) - f(\mu)}{\Delta \mu} \qquad \langle \bar{\chi} \chi \rangle = \frac{\partial f}{\partial m} \simeq \frac{f(m + \Delta m) - f(m)}{\Delta m} \qquad \langle \chi \chi \rangle = \frac{\partial f}{\partial \lambda} \simeq \frac{f(\lambda + \Delta \lambda) - f(\lambda)}{\Delta \lambda}
$$

$$
\Delta \mu = 0.04 \text{ for } m = 0.1 \qquad \Delta m = 10^{-4} \qquad \lambda = \Delta \lambda = 10^{-4}
$$

 $\Delta \mu = 0.02$ for $m = 1$

At m = 0.1: an intermediate phase is observed in a finite region of μ

At m = 1: a sharp transition is seen, and the intermediate phase becomes a very narrow region in

The qualitative behavior of the observables at finite m and/or λ is similar to that exhibited in a mean-field study of **the (3+1)-D theory, where spontaneous symmetry breaking exists [Y. Nishida+, Phys. Rept. 398 (2004) 281–300]**

Numerical results: Volume dependence

Quark number density:

 $2.00 -$

 $0.75 -$

 $0.50 -$

 0.25

 0.00

 $m = 0.1$ $\beta = 0$ $\lambda = 0$ $D = 84$

Diquark condensate:

 μ

 $m = 0.1$ $\beta = 0$ $\lambda = 0$ $D = 84$ $\frac{1}{\sqrt{6}}$ $V = 2^6$ $V = 2^6$ 0.8
 $V = 2^8$
 $V = 2^{10}$
 $V = 2^{10}$
 $V = 2^{12}$

0.6
 $V = 2^{14}$
 $V = 2^{14}$
 $V = 2^{16}$
 $V = 2^{18}$ 1.75 $V = 2^8$
 $V = 2^{10}$

1.50 $V = 2^{12}$
 $V = 2^{14}$

1.25 $V = 2^{14}$
 $V = 2^{16}$
 $V = 2^{18}$ $\begin{array}{c} \n\big\downarrow \gtrsim 0.4 \n\end{array}$ $\widehat{\mathcal{Z}}$ 1.00 $0.2\,$ 0.0 $0.2\,$ 0.3 0.4 0.5 0.7 0.0 0.1 0.6 0.3 0.0 0.1 0.2 0.4 0.5 0.6 0.7

• The thermodynamic limit is reached when $V = 2^{20}$

 μ

- **The behavior at finite coupling is similar to that at infinite coupling**
- As β becomes nonzero, the intermediate phase becomes broader at m = 0.1

 $\beta = 0$ $0.22 \le \mu \le 0.46$ $\beta = 0.8$ $0.22 \le \mu \le 0.52$

dependence of transition points

- **The first transition point (the** one at a smaller μ) seems to be robust against β
- **The second transition point locates at larger chemical** potential as β increases
- $\langle n \rangle$ does not saturate in regions **of larger chemical potential as the gauge interaction is weakened, approaching the continuum limit**

Summary

- **This is a TRG study on non-Abelian gauge theory coupled with standard staggered fermions at finite density and finite coupling**
- **Tensor network calculation for this kind of theories is computationally challenging because of the very large initial bond dimension**
- **We introduce an efficient initial tensor compression scheme to deal with this issue**
- TRG enables the calculation of important physical quantities at the infinite coupling limit and finite β regime
- **Future directions:**
	- **1)** Chiral limit and vanishing λ limit in higher dimensions
	- **2) Extension to the SU(3) gauge group**
	- **3) Construction of tensors which allows a larger sample size K for the discretization of gauge group**

Backup slides

^D dependence: K dependence:

Scheme of squeezer construction

