Tensor renormalization group analysis of entanglement entropy in $(1+1)$ -dimensional XY model

Gota Tanaka¹

in collaboration with Takahiro Hayazaki² Daisuke Kadoh¹ Shinji Takeda²

¹Meiji Gakuin U. ²Kanazawa U.

December 11th 2024, KEK-THEORY Workshop 2024

Quantum entanglement

- A non-local correlation between two subsystems of quantum many-body systems.
- Many applications in various fields: particle physics, quantum information, etc.
- **E** Entanglement entropy (EE) is a measure of the degree of quantum entanglement.

$$
S_A = -\mathrm{Tr}\rho_A \log \rho_A \qquad \qquad A
$$

where ρ_A is a reduced density matrix of the subsysem *A* and given by $\rho_A = \text{tr}_{\bar{A}}\rho$.

Entanglement entropy encodes the physical information about the system. For example, in one-dimensional quantum systems:

n Information about the effective degrees of freedom can be extracted from entropic *c*-function *C*(*l*)

$$
C(l) = \frac{l}{2} \frac{\partial S_A}{\partial l},
$$

where *l* is length of the subsystem *A*.

C(*l*) monotonically decreases along the RG flow *→* corresponds to the effective degrees of freedom. Entanglement entropy encodes the physical information about the system. For example, in one-dimensional quantum systems:

Central charge can be extracted from the scaling of *S^A* at critical point

$$
S_A(l) = \frac{c}{3} \log l + k,
$$

where *c* is a central charge and *k* is a constant.

Entanglement entropy encodes the physical information about the system. For example, in one-dimensional quantum systems:

■ Central charge can be extracted from the scaling of S_A at critical point

$$
S_A(l) = \frac{c}{3} \log l + k,
$$

where *c* is a central charge and *k* is a constant.

Subsystem size dependence of the EE is necessary to extract the physical information.

 \rightarrow We focus on the numerical approach to investigate such dependence.

Numerical approach to EE - Monte Carlo method

- Calculates the entropic *c*-function using replica trick. e.g. 4D SU(3) gauge theory [Itou-Nagata-Nakagawa-Nakamura-Zakharov, 2015] ∗ *n →* 1 extrapolation is needed to obtain EE due to replica trick.
- Based on the definition of the EE on lattice [Aoki-Iritani-Nozaki-Numasawa-Shiba-Tasaki, 2015]

Numerical approach to EE - Tensor Network

- Can directly compute the reduced density matrix and the EE.
	- ∗ Replica trick is not needed.
- EE of half-space subsystem in $(1+1)D O(3)$ non-linear sigma model is already studied [Kuramashi-Luo, 2023].
- Has no sign problem.

Numerical approach to EE - Tensor Network

- Can directly compute the reduced density matrix and the EE.
	- ∗ Replica trick is not needed.
- EE of half-space subsystem in $(1+1)D O(3)$ non-linear sigma model is already studied [Kuramashi-Luo, 2023].
- Has no sign problem.

We propose a new tensor network method for computing the subsystem size dependence of the EE. [Hayazaki-Kadoh-Takeda-GT, work in progress].

- $=$ Product of many tensors.
	- Various objects such as partition function, expectation value of physical quantity, wave function, etc. can be represented as a tensor network.

$$
Z = \int \mathcal{D}\phi e^{-S[\phi]} = \sum_{\cdots, a, b, c, d, e, f, g, \cdots} \cdots T_{abcd} T_{efgh} \cdots
$$

Tensor network

Tensor networks can be diagrammatically represented by the tensor diagram.

■ Nodes \rightarrow tensors.

External lines *→* tensor indices.

$$
T_{ijkl} \longrightarrow \leftarrow_{\underset{l}{\downarrow}}^{i} \leftarrow_{\underset{l}{\downarrow}}^{k} T_{ijk} \longrightarrow \leftarrow_{\underset{l}{\downarrow}}^{k}
$$

Internal lines \rightarrow contraction of tensor indices.

$$
\sum_{l} T_{ijkl} F_{jmn} \longrightarrow \prod_{l}^{k} \frac{n}{f} \longrightarrow m, \qquad \sum_{a} T_{iaal} \longrightarrow i \bigcap_{l}^{n}
$$

Tensor network

Partition function in tensor diagram:

$$
Z = \int \mathcal{D}\phi e^{-S[\phi]} = \sum_{\dots,a,b,c,d,e,f,g,\dots} \dots T_{abcd} T_{efag} \dots = \left[\begin{array}{c} T \\ \vdots \\ \vdots \\ \vdots \end{array}\right] \dots
$$

A huge number of tensor contractions in the tensor network.

- *→* Computational cost is too expensive.
- *→* we need some "coarse-graining".

Tensor Renormalization group (TRG) [Levin-Nave, 2006]

- $=$ Recursive coarse-graining of networks by singular value decomposition.
	- Various TRG algorithms are proposed:
		- A-TRG [Adachi-Okubo-Todo, 2019], Triad-TRG [Kadoh-Nakayama, 2019], etc.
	- Higher-order TRG (HOTRG) algorithm [Xie et al., 2012]

Tensor Renormalization group (TRG) [Levin-Nave, 2006]

- $=$ Recursive coarse-graining of networks by singular value decomposition.
	- Various TRG algorithms are proposed:
		- A-TRG [Adachi-Okubo-Todo, 2019], Triad-TRG [Kadoh-Nakayama, 2019], etc.
	- Higher-order TRG (HOTRG) algorithm [Xie et al., 2012]

Tensor network representation of reduced density matrix

In (1+1)-dimensioal lattice model with spatial size *L* and temporal size *N*, reduced density matrix ρ_A of the subsystem A with spatial size *l* is given by:

External lines $=$ index of ρ_A *→*We coarse-grain this network using HOTRG algorithm.

Example: total spatial size $L = 8$, temporal size $N = 8$, and subsystem size $l = 3$.

Tensor network representation of the reduced density matrix before coarse-graining.

After one HOTRG coarse-graining procedure:

After two HOTRG coarse-graining procedures:

At this stage, we can simplify this network further!

Tensors U and U^\dagger do not contribute to the entanglement entropy.

 $S_A = -\text{tr}\rho_A \log \rho_A = -\text{tr}U^{\dagger} \rho'_A U \log(U^{\dagger} \rho'_A U) = -\text{tr}\rho'_A \log \rho'_A$

Some isometry tensors can be contracted and become an identity matrix.

Finally, we obtain the simplified tensor network of the reduced density matrix below:

We established the algorithm to obtain this final result directly.

Our algorithm

We divide the simplified tensor network of the reduced density matrix into core matrix *C* and boundary factor *B*.

Our algorithm

In the following, we set the total spatial size $L = 2^n$, temporal size $N = \alpha \cdot 2^n$. The core matrix C consists of coarse-grained tensor $T^{(n-1)}.$

Our algorithm

The boundary factor B consists of isometry tensors $U^{(k)}$ and $U^{(k)\dagger}$ obtained in the coarse-graining procedure of tensor *T* (*k−*1)

The contraction of isometry tensors depends on the subsystem size *l*.

Numerical Analysis: $(1+1)D XY$ model

Partition function:

$$
Z = \int \prod_{x=0}^{L_x} \prod_{t=0}^{L_t} \frac{d\theta_{x,t}}{2\pi} e^{-S}
$$

$$
S = -\beta \sum_{x,t} \cos(\theta_{x,t+1} - \theta_{x,t}) - \beta \sum_{x,t} \cos(\theta_{x+1,t} - \theta_{x,t})
$$

β: inverse temperature Spatial lattice size $L = 1024$, temporal lattice size $N = 2^8 \times 1024$.

 \blacksquare XY model exhibits the topological BKT phase transition at $T = T_{\text{BKT}}$, and $0 < T < T_{\text{BKT}}$ is the critical line. $(T_{\text{BKT}} = 0.892943(2)$ [Ueda-Oshikawa, 2021])

Partition function*Z*:

$$
Z = \int \prod_{x=0}^{L_x} \prod_{t=0}^{L_t} \frac{d\theta_{x,t}}{2\pi} e^{-S} = \prod_{\text{lattice}} T_{xx'yy'}
$$

$$
T_{xx'yy'} \equiv \sqrt{e^{(y+y')\mu}} \delta_{x'+y'-x-y} \sqrt{I_{y'}(\beta)} \sqrt{I_{y}(\beta)} \sqrt{I_{x'}(\beta)} \sqrt{I_{x'}(\beta)}
$$

Ix(*β*): modified Bessel function of the first kind, where *x* takes from *−∞* to *∞*. *→* We regularize $I_x(\beta)$ by introducing the cutoff N_{cut} : $-N_{\text{cut}} \leq x \leq N_{\text{cut}}$

Result - subsystem size dependence of EE and central charge

- subsystem size *l*:
	- $l = 2^p + 2^q \ (q < p)$
- Analytic solution of EE of finite size subsystem

$$
S(l,L) = \frac{c}{3} \log \left(\sin \left(\frac{\pi l}{L} \right) \right) + k
$$

■ Central charge *c* by fitting the result to the analytic solution

 $c = 1.002(2)$

 \rightarrow agrees with known result $c = 1$.

Result - temperature dependence of EE

■ On the critical line $T = 0.6, 0.8 < T_{BKT}$

$$
S(l, L) = \frac{c}{3} \log \left(\sin \left(\frac{\pi l}{L} \right) \right) + k
$$

$$
\sim \frac{c}{3} \log l + \text{const.}
$$

- **Off-critical** $T = 1.0, 1.2 > T_{\text{BKT}}$: *l* dependence for small *l*
	- ∵ finite correlation length.
- Difference in the scaling of EE between on and off the critical line.

Summary of this talk:

- We studied the subsystem size dependence of the entanglement entropy in the $1+1D$ XY model.
- We determined the central charge on the critical line $T < T_{\text{BKT}}$.
- Difference in the scaling of the EE between on and off the critical line implies that we can investigate the transition temperature using the EE.

Future direction:

- Compute entanglement entropy of larger subsystem sizes.
- Determine transition temperature.

Method:

- **More efficient and accurate TRG algorithm**
	- e.g. HOSRG [Z. Y. Xie, et al., 2012]
- **Parallelization of algorithm for high performance computing**
	- e.g. Parallelized HOTRG [Yamashita-Sakurai, 2021]

Backup - Dcut dependence of the EE

28 / 32

Backup - Ncut dependence of the EE

29 / 32

Backup - Boundary factor

The boundary factor B is composed of isometries $U^{(n-2)}, U^{(n-3)}, \ldots, U^{(r)}.$ The integer *r* is the largest one that satisfies $a_k \neq b_k$, where

$$
l = \sum_{k=0}^{n-1} a_k 2^k \ (a_k = 0, 1),
$$

$$
l - 1 = \sum_{k=0}^{n-1} b_k 2^k \ (b_k = 0, 1).
$$

For example, letting $L=2^4$ and $l=5$, we have

$$
l = 0 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0,
$$

\n
$$
l - 1 = 0 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 0 \cdot 2^0,
$$

and $r = 0$.

Backup - Boundary factor

 b_k determines the form of contraction of isometry $U^{(k)}$ and $U^{\text{\tiny T}}(k)$.

The index of $U^{(k)}$ represented by a wavy line is contracted with the index of $U^{(k+1)}$ represented by a solid line or a dotted line.

Backup - Boundary factor

The indices represented by a wavy line are contracted with core matrix. $\frac{32}{32}$