Tensor renormalization group analysis of entanglement entropy in (1+1)-dimensional XY model

Gota Tanaka¹

in collaboration with Takahiro Hayazaki² Daisuke Kadoh¹ Shinji Takeda²

¹Meiji Gakuin U. ²Kanazawa U.

December 11th 2024, KEK-THEORY Workshop 2024

Quantum entanglement

- A non-local correlation between two subsystems of quantum many-body systems.
- Many applications in various fields: particle physics, quantum information, etc.
- Entanglement entropy (EE) is a measure of the degree of quantum entanglement.

$$S_A = -\mathrm{Tr}\rho_A \log \rho_A$$

where ρ_A is a reduced density matrix of the subsysem A and given by $\rho_A = tr_{\bar{A}}\rho$.

Entanglement entropy encodes the physical information about the system. For example, in one-dimensional quantum systems:

• Information about the effective degrees of freedom can be extracted from entropic c-function C(l)

$$C(l) = \frac{l}{2} \frac{\partial S_A}{\partial l},$$

where l is length of the subsystem A.

C(l) monotonically decreases along the RG flow \rightarrow corresponds to the effective degrees of freedom.

Entanglement entropy encodes the physical information about the system. For example, in one-dimensional quantum systems:

 \blacksquare Central charge can be extracted from the scaling of S_A at critical point

$$S_A(l) = \frac{c}{3}\log l + k,$$

where c is a central charge and k is a constant.

Entanglement entropy encodes the physical information about the system. For example, in one-dimensional quantum systems:

 \blacksquare Central charge can be extracted from the scaling of S_A at critical point

$$S_A(l) = \frac{c}{3}\log l + k,$$

where c is a central charge and k is a constant.

Subsystem size dependence of the EE is necessary to extract the physical information.

ightarrow We focus on the numerical approach to investigate such dependence.

Numerical approach to EE - Monte Carlo method

- Calculates the entropic *c*-function using replica trick.
 e.g. 4D SU(3) gauge theory [Itou-Nagata-Nakagawa-Nakamura-Zakharov, 2015]
 * n → 1 extrapolation is needed to obtain EE due to replica trick.
- Based on the definition of the EE on lattice [Aoki-Iritani-Nozaki-Numasawa-Shiba-Tasaki, 2015]

Numerical approach to EE - Tensor Network

- Can directly compute the reduced density matrix and the EE.
 - * Replica trick is not needed.
- EE of half-space subsystem in (1+1)D *O*(3) non-linear sigma model is already studied [Kuramashi-Luo, 2023].
- Has no sign problem.

Numerical approach to EE - Tensor Network

- Can directly compute the reduced density matrix and the EE.
 - * Replica trick is not needed.
- EE of half-space subsystem in (1+1)D *O*(3) non-linear sigma model is already studied [Kuramashi-Luo, 2023].
- Has no sign problem.

We propose a new tensor network method for computing the subsystem size dependence of the EE. [Hayazaki-Kadoh-Takeda-GT, work in progress].

- = Product of many tensors.
 - Various objects such as partition function, expectation value of physical quantity, wave function, etc. can be represented as a tensor network.

$$Z = \int \mathcal{D}\phi e^{-S[\phi]} = \sum_{\dots, a, b, c, d, e, f, g, \dots} \dots T_{abcd} T_{efgh} \dots$$

Tensor network

Tensor networks can be diagrammatically represented by the tensor diagram.

 $\blacksquare \ \mathsf{Nodes} \to \mathsf{tensors}.$

External lines \rightarrow tensor indices.

$$T_{ijkl} \longrightarrow \frac{i}{l} \xrightarrow{k} T_{ijk} \longrightarrow \frac{i}{j}$$

• Internal lines \rightarrow contraction of tensor indices.

$$\sum_{l} T_{ijkl} F_{jmn} \longrightarrow i \xrightarrow{k} I \xrightarrow{j} F m, \qquad \sum_{a} T_{iaal} \longrightarrow i \xrightarrow{T} I \xrightarrow{a} I$$

Tensor network

Partition function in tensor diagram:

$$Z = \int \mathcal{D}\phi e^{-S[\phi]} = \sum_{\dots,a,b,c,d,e,f,g,\dots} \dots T_{abcd} T_{efag} \dots =$$

A huge number of tensor contractions in the tensor network.

- \rightarrow Computational cost is too expensive.
- \rightarrow we need some "coarse-graining".

Tensor Renormalization group (TRG) [Levin-Nave, 2006]

- = Recursive coarse-graining of networks by singular value decomposition.
 - Various TRG algorithms are proposed:
 - A-TRG [Adachi-Okubo-Todo, 2019], Triad-TRG [Kadoh-Nakayama, 2019], etc.
 - Higher-order TRG (HOTRG) algorithm [Xie et al., 2012]

Tensor Renormalization group (TRG) [Levin-Nave, 2006]

- = Recursive coarse-graining of networks by singular value decomposition.
 - Various TRG algorithms are proposed:
 - A-TRG [Adachi-Okubo-Todo, 2019], Triad-TRG [Kadoh-Nakayama, 2019], etc.
 - Higher-order TRG (HOTRG) algorithm [Xie et al., 2012]

Tensor network representation of reduced density matrix

In (1+1)-dimensioal lattice model with spatial size L and temporal size N, reduced density matrix ρ_A of the subsystem A with spatial size l is given by:

External lines = index of ρ_A $\rightarrow \mbox{We coarse-grain this network using HOTRG algorithm.}$

Example: total spatial size L = 8, temporal size N = 8, and subsystem size l = 3.

Tensor network representation of the reduced density matrix before coarse-graining.

After one HOTRG coarse-graining procedure:

After two HOTRG coarse-graining procedures:

At this stage, we can simplify this network further!

Tensors U and U^{\dagger} do not contribute to the entanglement entropy.

 $S_A = -\mathrm{tr}\rho_A \log \rho_A = -\mathrm{tr}U^{\dagger}\rho'_A U \log(U^{\dagger}\rho'_A U) = -\mathrm{tr}\rho'_A \log \rho'_A$

Some isometry tensors can be contracted and become an identity matrix.

Finally, we obtain the simplified tensor network of the reduced density matrix below:

We established the algorithm to obtain this final result directly.

Our algorithm

We divide the simplified tensor network of the reduced density matrix into core matrix C and boundary factor B.

Our algorithm

In the following, we set the total spatial size $L = 2^n$, temporal size $N = \alpha \cdot 2^n$. The core matrix C consists of coarse-grained tensor $T^{(n-1)}$.

Our algorithm

The boundary factor B consists of isometry tensors $U^{(k)}$ and $U^{(k)\dagger}$ obtained in the coarse-graining procedure of tensor $T^{(k-1)}$

The contraction of isometry tensors depends on the subsystem size l.

Numerical Analysis: (1+1)D XY model

Partition function:

$$Z = \int \prod_{x=0}^{L_x} \prod_{t=0}^{L_t} \frac{d\theta_{x,t}}{2\pi} e^{-S}$$
$$S = -\beta \sum_{x,t} \cos(\theta_{x,t+1} - \theta_{x,t}) - \beta \sum_{x,t} \cos(\theta_{x+1,t} - \theta_{x,t})$$

 β : inverse temperature Spatial lattice size L = 1024, temporal lattice size $N = 2^8 \times 1024$.

• XY model exhibits the topological BKT phase transition at $T = T_{BKT}$, and $0 < T < T_{BKT}$ is the critical line. ($T_{BKT} = 0.892943(2)$ [Ueda-Oshikawa, 2021])

Partition function Z:

$$Z = \int \prod_{x=0}^{L_x} \prod_{t=0}^{L_t} \frac{d\theta_{x,t}}{2\pi} e^{-S} = \prod_{\text{lattice}} T_{xx'yy'}$$
$$T_{xx'yy'} \equiv \sqrt{e^{(y+y')\mu}} \delta_{x'+y'-x-y} \sqrt{I_{y'}(\beta)} \sqrt{I_{y}(\beta)} \sqrt{I_{x'}(\beta)} \sqrt{I_{x'}(\beta)}$$

 $I_x(\beta)$: modified Bessel function of the first kind, where x takes from $-\infty$ to ∞ . \rightarrow We regularize $I_x(\beta)$ by introducing the cutoff N_{cut} : $-N_{\text{cut}} \leq x \leq N_{\text{cut}}$

Result - subsystem size dependence of EE and central charge

- subsystem size l: $l = 2^p + 2^q (q < p)$
- Analytic solution of EE of finite size subsystem

$$S(l,L) = \frac{c}{3} \log\left(\sin\left(\frac{\pi l}{L}\right)\right) + k$$

 Central charge c by fitting the result to the analytic solution

c = 1.002(2)

 \rightarrow agrees with known result c = 1.

Result - temperature dependence of EE

• On the critical line $T = 0.6, 0.8 < T_{BKT}$

$$\begin{split} S(l,L) = & \frac{c}{3} \log \left(\sin \left(\frac{\pi l}{L} \right) \right) + k \\ & \sim & \frac{c}{3} \log l + \text{const.} \end{split}$$

- Off-critical T = 1.0, 1.2 > T_{BKT}:
 l dependence for small *l*
 - :: finite correlation length.
- Difference in the scaling of EE between on and off the critical line.

Summary of this talk:

- We studied the subsystem size dependence of the entanglement entropy in the 1+1D XY model.
- We determined the central charge on the critical line $T < T_{\rm BKT}$.
- Difference in the scaling of the EE between on and off the critical line implies that we can investigate the transition temperature using the EE.

Future direction:

- Compute entanglement entropy of larger subsystem sizes.
- Determine transition temperature.

Method:

- More efficient and accurate TRG algorithm e.g. HOSRG [Z. Y. Xie, et al., 2012]
- Parallelization of algorithm for high performance computing
 - e.g. Parallelized HOTRG [Yamashita-Sakurai, 2021]

Backup - Dcut dependence of the EE

Backup - Ncut dependence of the EE

29 / 32

Backup - Boundary factor

The boundary factor B is composed of isometries $U^{(n-2)}, U^{(n-3)}, \ldots, U^{(r)}$. The integer r is the largest one that satisfies $a_k \neq b_k$, where

$$l = \sum_{k=0}^{n-1} a_k 2^k \ (a_k = 0, 1),$$
$$l = \sum_{k=0}^{n-1} b_k 2^k \ (b_k = 0, 1).$$

For example, letting $L = 2^4$ and l = 5, we have

$$l = 0 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0,$$

$$l - 1 = 0 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 0 \cdot 2^0,$$

and r = 0.

Backup - Boundary factor

 b_k determines the form of contraction of isometry $U^{(k)}$ and $U^{\dagger(k)}$.

The index of $U^{(k)}$ represented by a wavy line is contracted with the index of $U^{(k+1)}$ represented by a solid line or a dotted line.

Backup - Boundary factor

The indices represented by a wavy line are contracted with core matrix.