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Quantum entanglement

m A non-local correlation between two subsystems of quantum many-body systems.
m Many applications in various fields: particle physics, quantum information, etc.

m Entanglement entropy (EE) is a measure of the degree of quantum entanglement.

A

Sa = —Trpylogpa

where p4 is a reduced density matrix of the subsysem A and given by p4 = tr zp.
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Entanglement entropy

Entanglement entropy encodes the physical information about the system.
For example, in one-dimensional quantum systems:

m Information about the effective degrees of freedom
can be extracted from entropic c-function C({)

105
O=57ar

where [ is length of the subsystem A.

C(1) monotonically decreases along the RG flow
— corresponds to the effective degrees of freedom.
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Entanglement entropy

Entanglement entropy encodes the physical information about the system.
For example, in one-dimensional quantum systems:

m Central charge can be extracted from the scaling of S4 at critical point
c
Sa(l) = zlogl+k,

where c is a central charge and k is a constant.
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Entanglement entropy

Entanglement entropy encodes the physical information about the system.
For example, in one-dimensional quantum systems:

m Central charge can be extracted from the scaling of S4 at critical point

Sa(l) = glogH-k,

where c is a central charge and k is a constant.

Subsystem size dependence of the EE is necessary to extract the physical
information.
— We focus on the numerical approach to investigate such dependence.
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Numerical approach to EE - Monte Carlo method

m Calculates the entropic c-function using replica trick.
e.g. 4D SU(3) gauge theory [Itou-Nagata-Nakagawa-Nakamura-Zakharov, 2015]

* n — 1 extrapolation is needed to obtain EE due to replica trick.

m Based on the definition of the EE on lattice
[Aoki-Iritani-Nozaki-Numasawa-Shiba-Tasaki, 2015]
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Numerical approach to EE - Tensor Network

m Can directly compute the reduced density matrix and the EE.

* Replica trick is not needed.

m EE of half-space subsystem in (14+1)D O(3) non-linear sigma model is already
studied [Kuramashi-Luo, 2023].

m Has no sign problem.
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Numerical approach to EE - Tensor Network

m Can directly compute the reduced density matrix and the EE.

* Replica trick is not needed.

m EE of half-space subsystem in (14+1)D O(3) non-linear sigma model is already
studied [Kuramashi-Luo, 2023].

m Has no sign problem.

We propose a new tensor network method for computing the subsystem size
dependence of the EE. [Hayazaki-Kadoh-Takeda-GT, work in progress].
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Tensor network

= Product of many tensors.

m Various objects such as partition function, expectation value of physical quantity,
wave function, etc. can be represented as a tensor network.

Z = / Doe %W = N TupedTesgn -

7a,b,C,d,e,f7g7"'
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Tensor network

Tensor networks can be diagrammatically represented by the tensor diagram.

m Nodes — tensors.
External lines — tensor indices.

Ty o

m Internal lines — contraction of tensor indices.

k n
. . 7n a
Z TijklP}mn m— iw m, Z Tiqq = | {)
l a l
l
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Tensor network

Partition function in tensor diagram:

-

Z = fque_S[d’] = ---Tabchefag e —
..a,b,cdef.g,..

S—— -

A huge number of tensor contractions in the tensor network.
— Computational cost is too expensive.

— we need some " coarse-graining” .
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Tensor Renormalization group (TRG) [Levin-Nave, 2006]

= Recursive coarse-graining of networks by singular value decomposition.

m Various TRG algorithms are proposed:
A-TRG [Adachi-Okubo-Todo, 2019], Triad-TRG [Kadoh-Nakayama, 2019], etc.

m Higher-order TRG (HOTRG) algorithm [Xie et al., 2012]

D D? Dyt Deyt

10/32



Tensor Renormalization group (TRG) [Levin-Nave, 2006]

= Recursive coarse-graining of networks by singular value decomposition.

m Various TRG algorithms are proposed:
A-TRG [Adachi-Okubo-Todo, 2019], Triad-TRG [Kadoh-Nakayama, 2019], etc.

m Higher-order TRG (HOTRG) algorithm [Xie et al., 2012]

— D? Deyt Dyt
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Tensor network representation of reduced density matrix

In (141)-dimensioal lattice model with spatial size L and temporal size N,
reduced density matrix p4 of the subsystem A with spatial size [ is given by:

o
A

Pa =

External lines = index of py

—We coarse-grain this network using HOTRG algorithm.
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HOTRG computation of reduced density matrix

Example: total spatial size L = 8, temporal size N = 8, and subsystem size | = 3.

Tensor network representation of the reduced density matrix before coarse-graining.
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HOTRG computation of reduced density matrix

After two HOTRG coarse-graining procedures:
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At this stage, we can simplify this network further!
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HOTRG computation of reduced density matrix

Tensors U and UT do not contribute to the entanglement entropy.
.,'.

———"

©

Sa =

—trpalog pa = —trU" pyUlog(UTpyU)

—trply log ply
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HOTRG computation of reduced density matrix

Some isometry tensors can be contracted and become an identity matrix.
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HOTRG computation of reduced density matrix

Finally, we obtain the simplified tensor network of the reduced density matrix below:
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We established the algorithm to obtain this final result directly.
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Our algorithm

We divide the simplified tensor network of the reduced density matrix into core matrix
C' and boundary factor B.
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Our algorithm

In the following, we set the total spatial size L = 2", temporal size N = « - 2™.
The core matrix C' consists of coarse-grained tensor 7"~ 1),

TOD .
Comin) = ) Qi 4
2a

T(: original tensor composing p,

> B
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Our algorithm

The boundary factor B consists of isometry tensors U*) and U®)1 obtained in the

coarse-graining procedure of tensor 7'(h—1)

y@m-nt

ym=-3t

The contraction of isometry tensors depends on the subsystem size [.
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Numerical Analysis: (1+1)D XY model

m Partition function:

th

/Hn%ts

z=01t=0

:—IBZCOS T+l — /BZCOS z+1,t — )

B inverse temperature
Spatial lattice size L = 1024, temporal lattice size N = 2% x 1024.

m XY model exhibits the topological BKT phase transition at 7' = TgkT, and
0 < T < Tgkr is the critical line. (Tgkt = 0.892943(2) [Ueda-Oshikawa, 2021])
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Tensor network for XY model

Partition functionZ:

/ﬁHdQIt = H Twzyy

=0 t=0 lattice
xwyy =ve y+y 51 !yl —x— y\/Iy’(ﬁ)\/Iy(ﬁ)m\/Ix(ﬁ)

I,(5): modified Bessel function of the first kind, where x takes from —oco to co.
— We regularize I,(3) by introducing the cutoff Neyt: —Neut < @ < Newt
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Result - subsystem size dependence of EE and central charge

2d XY model, L=210, Dcut=160, Nout=8, a=28 T=0.8929 ™ Subsystem size [:
2.6 : [ =2P 429 (q<p)

2.4¢

m Analytic solution of EE of finite
size subsystem

S@L):gbgem<?>>+k

m Central charge c by fitting the

y
)
[S)

—_

—

result to the analytic solution

Entanglement entrop
nNnN A~ OO 00O N

—_

¢ =1.002(2)

—_

Fitting by theoretical form .
0.8 10 100 —agrees with known result ¢ = 1.

Subsystem size
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Result - temperature dependence of EE

m On the critical line

2d XY model, L=210, Dcut=96
‘ T=0.6,08 <Tpkr

T=0.6 =
T=0.8 »* x X l
25(T=1.0 = . S, L) =Slog (sin [ Z2) ) + &
> | T=12 . (L L) =3 log L
8- ® o x - C
£ 2 kX% k™ ~—logl + const.
8 x x"x x % X X E_ R R 3
G 1.5/ T R . B _
€ x ‘X m Off-critical T'= 1.0, > TRKT:
[0) 3 x X
> 1 x [ dependence for small [
g 1t * .. .
£ - finite correlation length.
0.5¢ m Difference in the scaling of EE
between on and off the critical

07 10 100 line.

Subsystem size
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Conclusion and discusson

Summary of this talk:

m We studied the subsystem size dependence of the entanglement entropy in the
141D XY model.

m We determined the central charge on the critical line T' < Tgkr.

m Difference in the scaling of the EE between on and off the critical line implies that
we can investigate the transition temperature using the EE.
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Conclusion and discusson

Future direction:
m Compute entanglement entropy of larger subsystem sizes.
m Determine transition temperature.

Method:

m More efficient and accurate TRG algorithm
e.g. HOSRG [Z. Y. Xie, et al., 2012]

m Parallelization of algorithm for high performance computing
e.g. Parallelized HOTRG [Yamashita-Sakurai, 2021]
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Backup - Dcut dependence of the EE

2d XY model, L=210, Ncut=8, a=28 T=0.8929
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Backup - Ncut dependence of the EE

2d XY model, L=2"10, Dcut=64, T=0.8929
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Backup - Boundary factor

The boundary factor B is composed of isometries U2 y®=3) ).
The integer r is the largest one that satisfies aj # by, where

n—1
1= ap2" (ar = 0,1),
k=0

n—1
[=1=>) 52" (b =0,1).
k=0

For example, letting L = 2% and | = 5, we have
1=0-224+1-2240-2"+1.2°
1—1=0-22+1-2240-2'40-2°

and r = 0.
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Backup - Boundary factor

by, determines the form of contraction of isometry U*) and U,

y ot y T
'\/\/_ I SNG e
X -

The index of U®) represented by a wavy line is contracted with the index of U*+1)
represented by a solid line or a dotted line.
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Backup - Boundary factor

Example: Total spacial size 16, and subsystem size 5.
—by=1,b1 =0,bg =0 and r = 0.

The indices represented by a wavy line are contracted with core matrix. 25



