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Difficulties with de Sitter in string theory:

Supersymmetry algebra cannot be realized in dS

Various No-Go theorems (e.g. Maldacena–Nuñez (2000)) forbid Minkd/dSd
vacua only using classical ingredients

Can be evaded by including higher-curvature effects, localized sources (e.g.
O-planes), quantum effects (Casimir energy), . . .
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A mechanism for achieving dS vacua from hyperbolic compactifications of
M-theory was explored in [De Luca, Silverstein, Torroba – 21]

Key ingredients:

Compact hyperbolic manifolds generically have many cusp-like regions with
small cycles to support Casimir energy

Schematically, three-term structure for volume stabilization

(curvature) − (Casimir) + (flux)

Both warping in the cusp-like regions and “rigidity” of compact hyperbolic
manifolds help ensure the vacua are stable

Today: explicit construction realizing this proposal
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TO-DO

• Compact hyperbolic manifolds

• M-theory effective potential & stability

• dS4 vacua w/ neural networks



Compact Hyperbolic Manifolds



R× T 6

H7/Γ =

Requirements for X:

Large volume

Many small cycles

Highly symmetric (for numerics to be practical)

right-angled polytope P cusped manifold Xcusp compact manifold X

PE7 : V = 702, F = 56 X7
cusp: 8, 257, 536 cusps X7: vol ≈ 2× 109

PB3 : V = 6, F = 8 X3
cusp: 6 cusps X3: vol ≈ 7.33
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PB3 ⊂ H3 (ideal octahedron)

=⇒

X3
cusp

glue together 2c copies of P
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Cusp in X3
cusp

∞

ds2cusp = dz2

z2
+ z2ds2T 2

=⇒

Filled cusp in X3

SL(2,Z)

ds2 = dz2

z2−z2h
+
[
(z2 − z2h)dθ

2
1 + z2ds2T 1

]
/Z2

size zh of Casimir cycles
controlled by winding numbers
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Effective Potential



Low-energy dynamics of M-theory:

S11 =

∫
11

(
R(11) − 1

2
|G4|2 +

1

6
C3 ∧G4 ∧G4 + . . .

)
→

∫
11

(
R(11) − 1

2
|G7|2 + . . .

)

Consider warped products M1,3
symm ×X7:

ds211 = e2A(y)ds24,symm + g
(7)
ij (y) dyidyj

g(7) = e2B(y)( γ︸︷︷︸
unit

curvature

+ h︸︷︷︸
|h|≪1

)

G7 = N7 e
−2AvolX
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Effective potential [Douglas – ‘09]

V
(4)
eff =

∫
7
e4A

(
−R(7) − 42(∂A)2 + 2|G7|2 −

1

2
TCas

i
i

)
+

λ

2

(
1

ℓ24
−
∫
7
e2A

)
Importantly, this only depends on the 7d data.
The Casimir energy TCas

i
i ∼ ρ(Lcyc) ∼ − 1

L11
cyc

is localized to cusp-like regions of X7

Crude picture of volume stabilization:

R(7), (∂A)2 ∼ e−2B |G7|2 ∼ e−14B TCas ∼ e−11B

⟨B⟩
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Procedure:

Solve δVeff/δA = 0 for A in terms of other fields:

−12∇2(e2A) + Ue2A = −λ , U = 2R(7) − 4|G7|2 + TCas
i
i

(non-linear Schrödinger equation for u = e2A > 0 on X7)

Extremize off-shell effective potential V
(4)
eff [A(B, h,C6;λ), B, h, C6;λ]

On-shell V
(4)
eff = λ/ℓ24, so in the 4d effective theory the EoMs set R(4) = λ.

Free parameters:

X7
cusp (built from PE7) determines number of cusp-like regions, volume, etc.

Winding numbers determine filling geometry and size of minimal cycles

7-flux N7, helping to stabilize overall volume
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Stability:

Crude picture for volume
stabilization

Mostow–Prasad rigidity theorem:
fluctuations h are massive

Exponential warping avoids näıve
instability in cusp-like regions
[De Luca, Silverstein, Torroba – 21]

from [2104.13380]
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dS4 vacua w/ NNs



[GL – 25xx.xxxx]

Leverage X7’s high degree of symmetry to solve on domain D which is ≈1014

times smaller

3d analogue:

D =
...

Cost to pay is the complicated shape of D and variety of boundary conditions
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[GL – 25xx.xxxx]

Coupled PDEs in 7d domain with variety of boundary conditions: use NN
parametrization

yi
Aϑ(y)

Bϑ(y)

fi
x
ed

em
b
ed

d
in
g

First hidden layer is untrainable and ensures all boundary conditions are satisfied
(e.g. yi 7→ sin yi, cos yi)
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[GL – 25xx.xxxx]

During training, minimize residual loss:

L =

N∑
n=1

∥∥PDE[Aϑ, Bϑ](yn)
∥∥2

N7 = 200, w = (1, 1, 1, 2, 2, 2), averaging over transverse torus:

C
a
si
m
ir

d
om

in
at
ed

tran
siti

on
bulk
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Summary

Hyperbolic compactification of M-theory with competition between curvature,
flux and Casimir terms

X7 generically has many cusp-like regions supporting Casimir energy

Searching for vacua . . .
• Use highly-symmetric X7 to reduce to solving on much smaller domain

• NN parametrization for high-dimensional PDEs and satisfying complicated
boundary conditions

• Can understand behavior of solution in different regions (e.g. with Schrödinger
equation intuition)

• In progress: scan over parameters to find vacua under most control (tunably
small curvatures and large volumes) & confirm stability numerically (stay tuned!)
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