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Difficulties with de Sitter in string theory:

m Supersymmetry algebra cannot be realized in dS

m Various No-Go theorems (e.g. Maldacena—Nunez (2000)) forbid Minky/dS,
vacua only using classical ingredients

Can be evaded by including higher-curvature effects, localized sources (e.g.
O-planes), quantum effects (Casimir energy), ...
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A mechanism for achieving dS vacua from hyperbolic compactifications of
M-theory was explored in [De Luca, Silverstein, Torroba — 21]

Key ingredients:
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m Schematically, three-term structure for volume stabilization

(curvature) — (Casimir) + (flux)
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A mechanism for achieving dS vacua from hyperbolic compactifications of
M-theory was explored in [De Luca, Silverstein, Torroba — 21]

Key ingredients:
m Compact hyperbolic manifolds generically have many cusp-like regions with
small cycles to support Casimir energy

m Schematically, three-term structure for volume stabilization

(curvature) — (Casimir) + (flux)

m Both warping in the cusp-like regions and “rigidity” of compact hyperbolic
manifolds help ensure the vacua are stable

Today: explicit construction realizing this proposal
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TO-DO
e Compact hyperbolic manifolds
e M-theory effective potential & stability

e dS; vacua w/ neural networks
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Requirements for X:
m Large volume
m Many small cycles
m Highly symmetric (for numerics to be practical)
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R x T

~ >

Requirements for X:
m Large volume
m Many small cycles
m Highly symmetric (for numerics to be practical)

right-angled polytope P —— cusped manifold Xcus, — compact manifold X

PPV =702, F = 56 X7iep: 8,257,536 cusps X7: vol = 2 x 10°
PBs. V=6 F=8 X3t 6 cusps X3: vol ~ 7.33

G. J. LOGEs DS FROM M-THEORY 3/13



PBs ¢ H3 (ideal octahedron)




PBs ¢ H3 (ideal octahedron) X3

glue together 2¢ copies of P
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Cusp in X3

cusp




Cusp in Xg’usp Filled cusp in X3

SL(2, z)

2 _ d2? 272 \
dsgusp = & +27°dshs

ds? = 422 4 [(2% — 22)d6% + 2%dsZ, | /72

2_ .2
z 2L

size zp, of Casimir cycles
controlled by winding numbers
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EFFECTIVE POTENTIAL



Low-energy dynamics of M-theory:

SH:/ (R<11 \G4!2+ CgAG4/\G4~|— )% / <R<11>—
11 11
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Low-energy dynamics of M-theory:

SH:/ (R<11 \G4!2+ CgAG4/\G4~|— )% / <R<11>—
11 11

Consider warped products Mslb}f’nm x X7

7 i i
dst) = AWds3 o + 957 (y) dy'dy’

(7) — (2BW)(
= v+ )
~—
unit |h|<1
curvature

G7 = Ny e *volx

g
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Effective potential [Douglas — ‘09]

1 . 1
i _ /64A —R — 42(0A)? + 2|G7|2 — —Teas's ) + A i /62A

Importantly, this only depends on the 7d data.

The Casimir energy Tcas'i ~ P(Leye) ~ —L% is localized to cusp-like regions of X"
cyc

G. J. LOGEs DS FROM M-THEORY 7/13



Effective potential [Douglas — ‘09]

i _ /64A —R — 42(0A4)? + 2|G7|2 — L rewsts ) 4+ 2 % - /62A

Importantly, this only depends on the 7d data.
The Casimir energy Tcas'i ~ p(Leye) ~ —L% is localized to cusp-like regions of X"
cyc

Crude picture of volume stabilization:

R(7), (814)2 ~ e 2B ’G7’2 ~ e 14B Teas ~ e~ 11B
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Procedure:
m Solve 0Vog/0A = 0 for A in terms of other fields:

—12V2(M) + U = =X, U =2R" —4|G7|? + Tcas's

(non-linear Schrédinger equation for u = €24 > 0 on X7)
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Procedure:
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(non-linear Schrédinger equation for u = €24 > 0 on X7)

m Extremize off-shell effective potential V;(é) [A(B, h,Cg; \), B, h,Cg; ]
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Procedure:
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Procedure:
m Solve 0Vog/0A = 0 for A in terms of other fields:

—12V2(M) + U = =X, U =2R" —4|G7|? + Tcas's

(non-linear Schrédinger equation for u = €24 > 0 on X7)
m Extremize off—shell effective potential V;(é) [A(B, h,Cg; \), B, h,Cg; ]
m On-shell V = \/£3, so0 in the 4d effective theory the EoMs set R® = ).

Free parameters:
] Xgusp (built from P¥7) determines number of cusp-like regions, volume, etc.
m Winding numbers determine filling geometry and size of minimal cycles

m 7-flux N7, helping to stabilize overall volume
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Stability:
m Crude picture for volume
stabilization

Veﬂ:[“' h, <)
. ,Rh-j SF&)I . pr. (F_,

m Mostow—Prasad rigidity theorem:
fluctuations h are massive

m Exponential warping avoids naive /I > )
instability in cusp-like regions Vi
[De Luca, Silverstein, Torroba — 21] R. J‘B) C‘

from [2104.13380]
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dS, vacua w/ NNs



4

Leverage X 7’s high degree of symmetry to solve on domain D which is ~10 Y,

times smaller

[GL — 25xx.xxxx]
3d analogue:

Cost to pay is the complicated shape of D and variety of boundary conditions

G. J. LoGES DS FROM M-THEORY 10/13



Coupled PDEs in 7d domain with variety of boundary conditions: use NN
parametrization

[GL — 25xx.xxxx]

ing R\

fixed embedd

0.7
BN \

N
N IS 7
)X‘X\}‘ig: /XX SN
< 2\

First hidden layer is untrainable and ensures all boundary conditions are satisfied
(e.g. ' = siny’, cosy?)
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During training, minimize residual loss:

£=">"|PDE[Ay, By](yn)|’

n=1 [GL — 25xx.xxxx]

N7 =200, w=(1,1,1,2,2,2), averaging over transverse torus:
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SUMMARY

m Hyperbolic compactification of M-theory with competition between curvature,
flux and Casimir terms

m X7 generically has many cusp-like regions supporting Casimir energy

m Searching for vacua ...
e Use highly-symmetric X7 to reduce to solving on much smaller domain

® NN parametrization for high-dimensional PDEs and satisfying complicated
boundary conditions

® Can understand behavior of solution in different regions (e.g. with Schrodinger
equation intuition)

® In progress: scan over parameters to find vacua under most control (tunabl ?
small curvatures and large volumes) & confirm stability numerically (stay tunghil
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