Quantum tunneling, decoherence and the beginning of the Universe from Lefschetz thimble real-time simulations

KEK Theory Workshop 2024 KEK Theory Center, Tsukuba, Japan Dec.11, 2024

Jun Nishimura (KEK, SOKENDAI)

JN, Katsuta Sakai, Atis Yosprakob, JHEP 09 (2023) 110, arXiv: 2307.11199 [hep-th]
 Chien-Yu Chou, JN, arXiv: 2407.17724 [gr-qc]
 JN, Hiromasa Watanabe, arXiv: 2408.16627 [quant-ph]

Progress in real-time path integral

 \blacktriangleright quantum mechanics : $\Psi(x_{f}, t_{f}) = \int_{x(t_{f})=x_{f}} \mathcal{D}x(t) \Psi(x(t_{i}), t_{i}) e^{iS[x(t)]/\hbar}$ ("time" is one of the dynamical variables) quantum gravity $\Psi[h] = \int \mathcal{D}g_{\mu\nu} e^{iS[g]/\hbar}$ nonperturbative formulation of string theory IKKT matrix model ("time" is an emergent concept) $Z = \int dA_{\mu} \left(e^{iS[A]} \right)$ the oscillating behavior

conceptual problem : How to define the oscillating integral

Picard-Lefschetz theory

technical problem : How to overcome the sign problem in MC sim.

Lefschetz thimble method

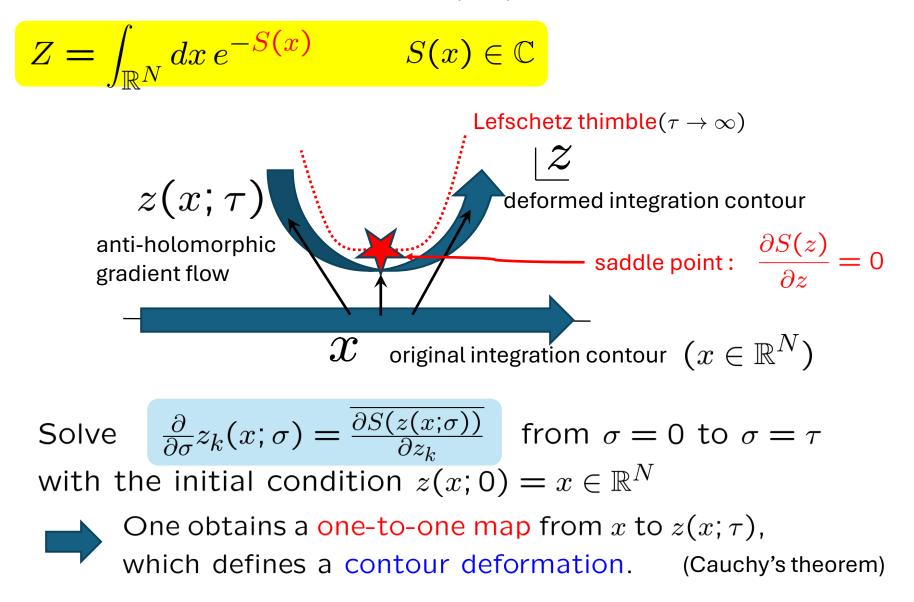
Plan of the talk

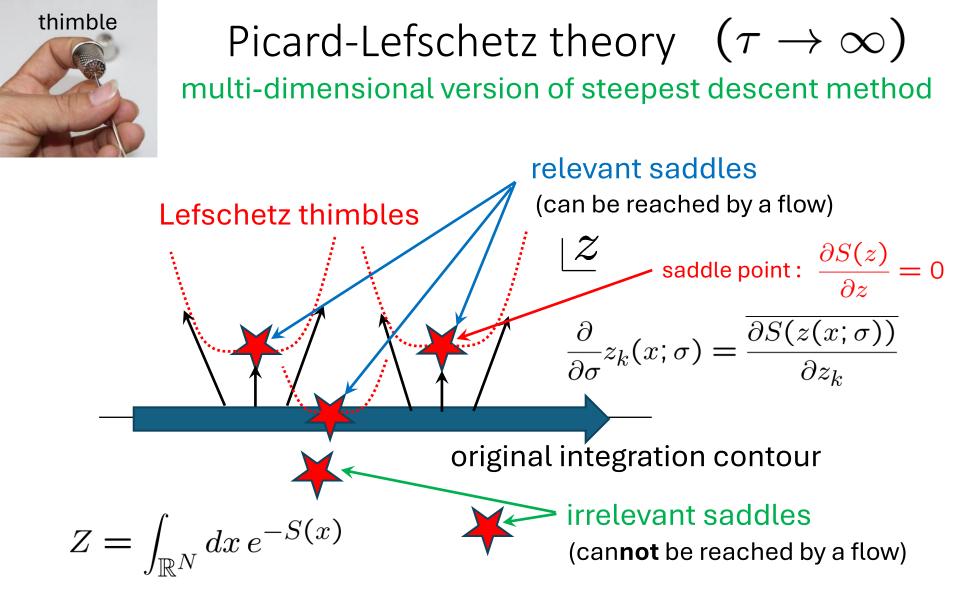
- 0. Introduction
- 1. Lefschetz thimble method and the Picard-Lefschetz theory
- 2. A new picture of quantum tunneling
- 3. Quantum tunneling at the beginning of the universe
- 4. Quantum decoherence from saddle points
- 5. Summary and discussions

1. Lefschetz thimble method and the Picard-Lefschetz theory

Lefschetz thimble method

Alexandru, Basar, Bedaque, Ridgway, Warrington, JHEP 1605 (2016) 053





An oscillating integral can be made well defined uniquely. No ambiguity in the choice of integration contour.

2. A new picture of quantum tunneling

JN, Katsuta Sakai, Atis Yosprakob,

"A new picture of quantum tunneling in the real-time path integral from Lefschetz thimble calculations" JHEP 09 (2023) 110, arXiv: 2307.11199 [hep-th]

Time-evolution of the wave function

$$\Psi(x_{\mathsf{f}}, t_{\mathsf{f}}) = \int_{x(t_{\mathsf{f}}) = x_{\mathsf{f}}} \mathcal{D}x(t) \Psi(x(t_{\mathsf{i}}), t_{\mathsf{i}}) e^{iS[x(t)]}$$

$$S[x(t)] = \int dt \left\{ \frac{1}{2} m \left(\frac{dx}{dt} \right)^2 - V(x) \right\}$$
$$V(x) = \alpha (x^2 - 1)^2 \qquad \alpha = 2.5$$

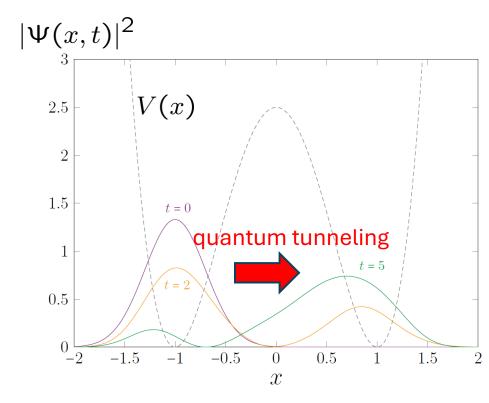
$$\Psi(x, t_{i}) = \exp\left\{-\frac{1}{4\sigma^{2}}(x-b)^{2}\right\}$$
$$\sigma = 0.3, \quad b = -1$$
$$x_{f} = 1$$
$$T \equiv t_{f} - t_{i} = 2$$

Discretize the time as:

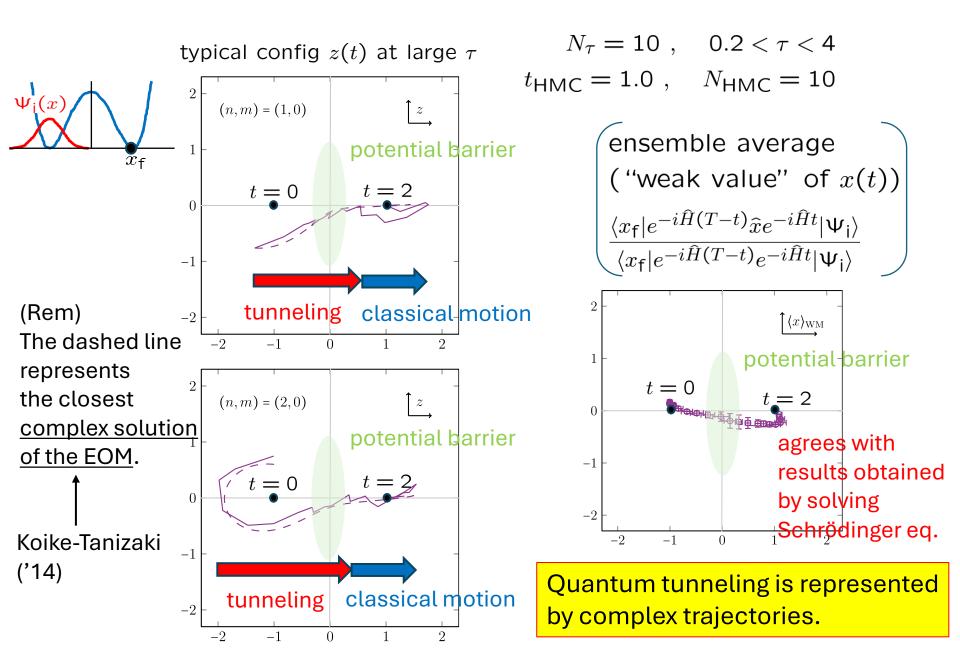
$$x_n = x(t_n)$$

$$t_n = \frac{n}{N}T \qquad (n = 0, \dots, N)$$

$$N = 20$$



Results of Lefschetz thimble method



A new understanding of quantum tunneling $\Psi(x_{f}, t_{f}) = \int \mathcal{D}x(t) \Psi(x(t_{i}), t_{i}) e^{iS[x(t)]/\hbar}$

initial wave function $\Psi(x, t_i) = \varphi(x) e^{ipx/\hbar}$

 $\varphi(x)$ is assumed to have a finite support $\Delta \equiv [x_{\min}, x_{\max}]$

 $\hbar \to 0$ Classical EOM $\frac{\delta S[x(t)]}{\delta x(t)} = 0$

If real x(t) exists,
 it is a relevant & dominant saddle.

 If real x(t) does not exist, the relevant saddle with min. ImS(> 0) dominates.

|prob. amplitude| $\sim e^{-\mathrm{Im}S[x^{\star}]/\hbar}$ (instanton-like suppression) Boundary condition $x(t_i) \in \Delta, \quad \dot{x}(t_i) = \frac{p}{m}$ $x(t_f) = x_f$

> real trajectory emergence of classical motion

complex trajectory semi-classical description of quantum tunneling

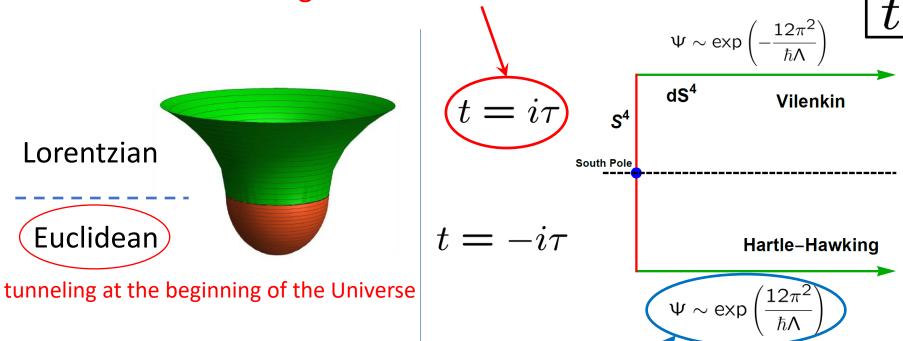
Can be observed by using the weak measurement

3. Quantum tunneling at the beginning of the universe

Chien-Yu Chou, JN, "Monte Carlo studies of quantum cosmology by the generalized Lefschetz thimble method" arXiv: 2407.17724 [gr-qc]

Issues in quantum cosmology

 Vilenkin's proposal seems to have instability in fluctuations due to the "wrong" Wick rotation.



• Hartle-Hawking's proposal seems to be **incompatible** with the inflation scenario since it favors $\Lambda = 0$.

Which is the relevant saddle point ?

mini-superspace model

Halliwell-Louko, Phys.Rev.D 39 (1989) 2206

Assuming homogeneous, isotropic, closed space-time

 $ds^{2} = a^{2}(\eta)(-N(\eta)^{2}d\eta^{2} + d\Omega_{3}^{2})$ η : conformal time scale factor lapse function

Einstein-Hilbert action

Instein-Hilbert action

$$S_{\mathsf{EH}}[a,N] = 6\pi^2 \int d\eta \left\{ -\frac{1}{N} \left(\frac{da}{d\eta} \right)^2 + NV(a) \right\} \qquad V(a) = a^2 - \frac{\Lambda}{3} a^4$$

change of variables: $\begin{cases} q = a^2 \\ dn = a^{-2}(t)dt \end{cases}$

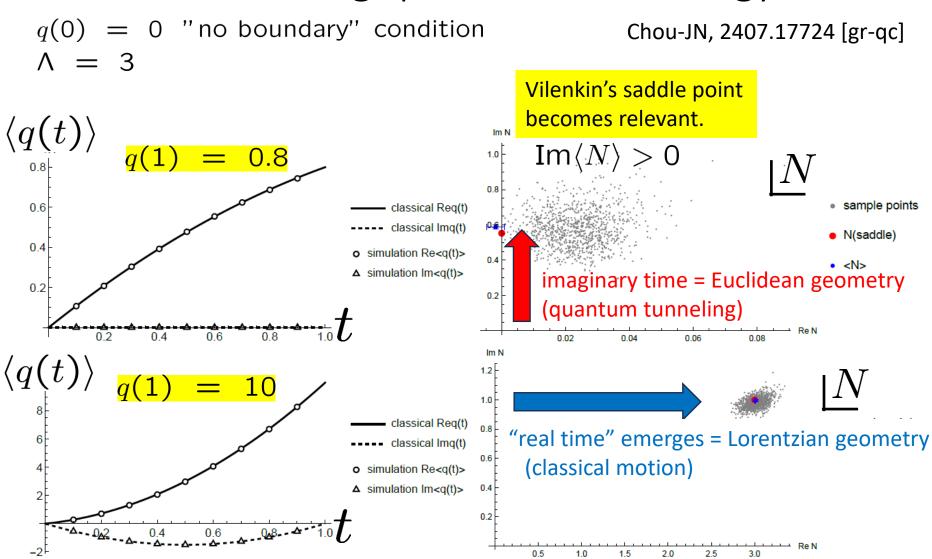
$$ds^{2} = -\frac{N^{2}}{q(t)}dt^{2} + q(t) d\Omega_{3}^{2} \qquad N = \text{const. (reparam. inv.)}$$
$$S_{\mathsf{EH}}[q, N] = 6\pi^{2} \int_{0}^{1} dt \left\{ -\frac{1}{4N} \left(\frac{dq}{dt}\right)^{2} + N \left(1 - \frac{\Lambda}{3}q\right) \right\}$$

q(t) can be integrated out by the Gaussian integral Integration over N has ambiguity in the choice of contour.

Picard-Lefschetz theory \rightarrow Vilenkin's saddle becomes relevant.

Feldbrugge-Lehners-Turok, Phys.Rev.D 95 (2017) 10, 103508, 1703.02076 [hep-th]

Simulating quantum cosmology



Next step : Add tensor modes and investigate the instability issue.

4. Quantum decoherence from saddle points

JN, Hiromasa Watanabe, "Quantum decoherence from saddle points" arXiv: 2408.16627 [quant-ph]

Couple the system to an environment

$$L = L_{\mathcal{S}} + L_{\mathcal{E}} + L_{\text{int}}$$

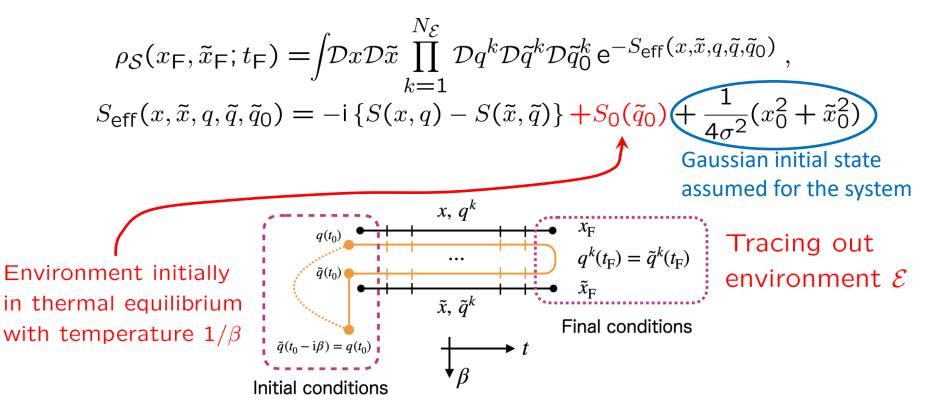
Caldeira-Leggett ('83)

$$L_{\mathcal{S}} = \frac{1}{2} M \dot{x}(t)^2 - \frac{1}{2} M \omega_b^2 x(t)^2 ,$$

$$L_{\mathcal{E}} = \sum_{k=1}^{N_{\mathcal{E}}} \left\{ \frac{1}{2} m \, \dot{q}^k(t)^2 - \frac{1}{2} m \, \omega_k^2 \, q^k(t)^2 \right\} ,$$

$$L_{\text{int}} = c \, x(t) \sum_{k=1}^{N_{\mathcal{E}}} q^k(t) ,$$

reduced density matrix after tracing out the environment



Exact results from saddle points

JN, Hiromasa Watanabe, arXiv: 2408.16627 [quant-ph]

Introducing
$$X_{\mu} = \{x_i, \tilde{x}_i, q_i^k, \tilde{q}_i^k, (\tilde{q}_0^k)_j\}$$

$$S_{\text{eff}}(x, \tilde{x}, q, \tilde{q}, \tilde{q}_0) = \frac{1}{2} X_{\mu} \mathcal{M}_{\mu\nu} X_{\nu} - C_{\mu} X_{\mu} + B$$

saddle point:
$$\bar{X}_{\mu} = \left(\mathcal{M}^{-1}\right)_{\mu\nu} C_{\nu}$$

 $X_{\mu} = \bar{X}_{\mu} + Y_{\mu}$

Integrating Y_{μ} ,

$$\rho_{\mathcal{S}}(x_{\mathsf{F}}, \tilde{x}_{\mathsf{F}}; t_{\mathsf{F}}) = \frac{1}{\sqrt{\det \mathcal{M}}} e^{-\mathcal{A}} ,$$
$$\mathcal{A} = B - \frac{1}{2} C_{\mu} \left(\mathcal{M}^{-1} \right)_{\mu\nu} C_{\nu}$$

Quantum decoherence is captured by complex saddle points. (analogous to what we have found for quantum tunneling)

Disappearance of interference pattern

 γ : coupling with environment β : inverse temperature

JN, Hiromasa Watanabe, in preparation

2

 $- \gamma = 0.05$

 $--\gamma = 0.5$

2

 $(N_{\mathcal{E}} = 64, \, \omega_{\text{cut}} = 2.0, \, \omega_{\text{r}} = 0, \, \sigma = 0.1)$ $ho_{\mathcal{S}}(x,x;t)$ t = 0.3t = 0.5t = 0.7t = 00.80.80.80.8t = 0.3t = 0.5t = 0.1 $\beta = 0.05 \bullet \bullet \cdot \beta = 0.1$ 0.60.60.6 $\beta = 0.5 \quad \bullet \bullet \cdot \gamma = 0$ 0.60.40.40.4 $\beta = 0.5, 0.1, 0.05$ 0.4v = -1t = 0.70.20.20.20.2 $(\gamma = 0.1)$ 0.00.0-2-20 2 -22 2 $^{-2}$ -44 0 $\mathbf{4}$ 0 4 xxxx0.80.80.80.8t = 0.3t = 0.1t = 0.50.60.60.6 0.6= 0.1 $\gamma = 0.05, 0.1, 0.5$ 0.4 0.40.40.4t = 0.7 $(\beta = 0.05)$ 0.20.20.20.20.00.0 0.0 0.0-20 $\mathbf{2}$ 4 -20 24 -20 24 -20 -4-4-4xxxx

Master eq. (with Born and Markov approximations)

$$\frac{d}{dt}\rho_{\mathcal{S}}(x,\tilde{x};t) = K(x,\tilde{x})\rho_{\mathcal{S}}(x,\tilde{x},t) , \qquad (\omega_{\mathsf{r}} \ll \omega_{\mathsf{cut}} \ll T = \beta^{-1})$$

$$K(x,\tilde{x}) = \frac{\mathsf{i}}{2M} \left(\frac{\partial^2}{\partial x^2} - \frac{\partial^2}{\partial \tilde{x}^2} \right) - \frac{\mathsf{i}}{2} M \omega_{\mathsf{r}}^2 (x^2 - \tilde{x}^2) - \gamma(x - \tilde{x}) \left(\frac{\partial}{\partial x} - \frac{\partial}{\partial \tilde{x}} \right) \underbrace{\frac{2M\gamma}{\beta} (x - \tilde{x})^2}_{\beta}$$
The effect of decoherence is $\propto \frac{\gamma}{\beta}$

Quantum decoherence is captured by complex saddles in the real-time path integral.

5. Summary and discussions

Summary

Quantum time-evolution includes many interesting physics.

- > quantum tunneling
- beginning of the Universe
- quantum decoherence

Real-time path integral : very useful in studying these things.

- Oscillating integral can be dealt with by the Picard-Lefschetz theory.
- > These phenomena can be captured by relevant (complex) saddle points.
- Monte Carlo simulation is possible by using the Lefschetz thimble method.

• Various applications are waiting for us!

- Measurement problems (Schrödinger's cat)
- Instability problem of Vilenkin's saddle (smooth beginning of the Universe)
- Matrix model (emergence of (3+1)D spacetime from superstring theory)
- Quantum chaos (calculations of out-of-time-order correlators)
- Quantum information (and its relation to AdS/CFT) etc.