Introduction	
0000000000	

Complex Langevin Method

Result 0000000

Complex Langevin Lattice QCD for Color-Superconductivity at Extremely High Density

Kohtaroh Miura

KEK, Institute of Particle and Nuclear Studies, Theory Center

2024 December 11 at KEK-THEORY Workshop

Introduction	Complex Langevin Method	Result 0000000	Summary 00000
Collaboration			
	(1) is in the of T erritoria (
Yunma Asano	(University of Tsukuba)		
Yuta Ito	(Tokuyama College)		
Hideo Matsufuru	(KEK/SOKENDAI)		
Kohtaroh Miura	(KEK-IPNS)		
Yusuke Namekawa	(Hiroshima University)		
Jun Nishimura	(KEK/SOKENDAI)		
Asato Tsuchiya	(Shizuoka University)		
Shoichiro Tsutsui	(RIKEN-iTHEMS)		
Takeru Yokota	(RIKEN)		

References

- T. Yokota, Y. Ito, H. Matsufuru, Y. Namekawa, J. Nishimura, A. Tsuchiya and S. Tsutsui, JHEP 06 (2023), 061 [arXiv:2302.11273 [hep-lat]].
- [2] S. Tsutsui, Y. Asano, Y. Ito, H. Matsufuru, Y. Namekawa, J. Nishimura, A. Tsuchiya and T. Yokota, PoS LATTICE2021, 533 (2022) [arXiv: 2111.15095 [hep-lat]].
- [3] Y. Ito, H. Matsufuru, Y. Namekawa, J. Nishimura, S. Shimasaki, A. Tsuchiya and S. Tsutsui, JHEP 10, 144 (2020) [arXiv: 2007.08778 [hep-lat]].

▲□▶ ▲圖▶ ▲필▶ ▲필▶ _ 필]님

Introduction	Complex Langevin Method	Result	Summary
••••••		0000000	00000
QCD Phase Diagram			

The QCD phase diagram is very interesting.

Introduction	Complex Langevin Method	Result	Summary
O●OOOOOOO		0000000	00000
OCD Phase Diagram			

High ρ : First principle calculations are very limited

due to Sign Problem in Monte Carlo based LQCDs.

Introduction	Complex Langevin Method	Result 0000000	Summary 00000
OCD Phase Diagram			

High *ρ*: Colorsuperconductor (CSC, [4]- [7]) or Quarkyonic [9, 10]?

[4] Barrois (NPB'77), [5] Frautschi (SpringerUSA'80), [6] Bailin et al (NPB'81), [7] Alford et al (PLB'98), [9] McLerran et al (NPA'07), [10] Hidaka et al (NPA'08).

→ ∃ →

Introduction	Complex Langevin Method	Result	Summary
00000000	0000	0000000	00000
OCD Phase Diagram			

High ρ : Attack the sign problem by Complex Langevin based LQCD (CL-LQCD) for CSC.

c.f. Lefschetz Thimble, TRG, LYZ, Quantum Computer...

< ∃ >

- Max. eigenvalue of M
 - = critical lattice coupling β_c = phase boundary of normal and CSC phases.
- No Gauge Fixing for the diquark Σ_{12} is required.

c.f. Small-Box QCD or QCD-like models at Continuum [11,12,13]: S. Hands et al, JHEP'12; JHEP'10; PLB'02.

Introduction
0000000000

Complex Langevin Method

Result

Expected Phase Diagram in Small-Box LQCD

Slide borrowed from T. Yokota.

Introduction	Complex Langevin Method	Result	Summary
0000000000	0000	0000000	00000

Expected Phase Diagram in Small-Box LQCD

Slide borrowed from T. Yokota.

Introduction	Complex Langevin Method	Result	Summary
0000000000	0000	0000000	00000

Expected Phase Diagram in Small-Box LQCD

Slide borrowed from T. Yokota.

Introduction	Complex Langevin Method	Result 0000000	Summary 00000
This Talk			

Complex-Langevin Lattice QCD

- in a Small-Box,
- guided by One-Loop QCD Gap Equations,
- focusing on Colorsuperconductivity,
- in a gauge invariant way.

Introduction	Complex Langevin Method	Result 0000000	Summary 00000
Table of Contents			

Introduction

- QCD Phase Diagram
- Strategy: Small-Box LQCD

2 Complex Langevin Method

- Complex Langevin Method in LQCD
- Source-Term Method

3 Result

- Basic Observables
- Response to Diquark Source-Term

Summary

0000000000	● O O O	0000000	00000
Table of Contents			

- QCD Phase Diagram
- Strategy: Small-Box LQCD

Complex Langevin Method

- Complex Langevin Method in LQCD
- Source-Term Method

3 Result

- Basic Observables
- Response to Diquark Source-Term

Summary

< E

Introduction	Complex Langevin Method		Result 0000000	Summary 00000
Complex Langevin in Lattice	QCD			
Complexification of Glue $U_{\mu x} \in SU(3) \Longrightarrow$	on Fields: $\cdot \mathcal{U}_{\mu x}(au) \in \mathit{SL}(3,\mathbb{C}) \; .$	(1)	Parisi '83; Klauder '84; Aarts, Seiler, Stamatescu ' Aarts, James,Seiler, Stama Seiler, Sexty, Stamatescu ' Fodor, Katz, Sexty, Torok ' Nishimura, Shimasaki '15; Nagata, Nishimura, Shimas Sinclair, Kogut '16	09; tescu '11; 13; Sexty '14; 15; saki '15;
Complex Langevin Equ	ation:			
$\mathcal{U}_{\mu x}(au+\epsilon)=$	$= \exp\left[i\lambda^{a}\left(-\epsilon\underbrace{\mathbf{V}_{a\mu x}[\mathcal{U}(\tau)]}_{\text{drift term}}\right]$	$\underline{)} + \sqrt{\epsilon}$	$\underbrace{\eta_{a\mu x}(au)}_{ ext{gaussian noise}} \Big] \mathcal{U}_{\mu x}(au) \; .$	(2)

c.f. For
$$z \in \mathbb{C}$$
, $\partial_{\tau} z(\tau) = \underbrace{-\partial_z S(z)}_{\text{drift term}} + \underbrace{\eta(\tau)}_{\text{gaussian noise}}$.

We expect:

$$\lim_{\tau \to \infty} \left\langle O[\mathcal{U}(\tau)] \right\rangle_{\eta} \stackrel{!}{=} \int DU P[U] O[U] . \tag{3}$$

Introduction	Complex Langevin Method	Result	Summary
0000000000		0000000	00000
Complex Langevin ir	Lattice QCD		

For a correct convergence of Complex-Langevin processes, (So that associated Fokker-Planck Eq. achieves correct probability distribution.)

The Drift Term,

$$\mathcal{U}_{a\mu x}[\mathcal{U}] = \lim_{\epsilon \to 0} \frac{S[e^{i\epsilon\lambda_a}\mathcal{U}_{\mu x}] - S[\mathcal{U}_{\mu x}]}{\epsilon} , \qquad (4)$$

should be regular (no singular drift problem). To confirm, monitor that the histogram of

$$v_{max} = \left(\frac{1}{\text{Vol}} \sum_{x,\mu} \sum_{i=1}^{N_{c}^{c}-1} |v_{a\mu x}|^{2}\right)^{1/2}.$$
 (5)

rapidly (exponentially) attenuates (Nagata et al, PRD'16).

The Unitarity Norm

$$\mathcal{N}_{u} = \frac{2}{\text{Vol}} \sum_{x\nu} \text{Tr} \Big[\mathcal{U}_{x\mu}^{\dagger} \mathcal{U}_{x\mu} + (\mathcal{U}_{x\mu}^{-1})^{\dagger} \mathcal{U}_{x\mu}^{-1} - 2 \times \mathbf{1}_{3} \Big] , \qquad (6)$$

should stay small enough (no excursion of gluon fields into a deeply imaginary regime), which is achieved by a gauge cooling (Seiler et al, PLB'13).

Introduction	Complex Langevin Method	Result	Summary
0000000000	○○○●	0000000	00000
Source-Term Method			

• To extract a signal of diquark condensates on the lattice QCD, we introduce a source term

$$S_{\phi} = \sum_{n} m_{\phi}^{2} \phi_{n}^{a,\dagger} \phi_{n,a} + S_{J} , \quad S_{J} = J \sum_{n} \left[\epsilon^{abc} (\chi_{a} \chi_{b} \phi_{c})_{n} - h.c. \right] .$$
(7)

• The original staggered quark action $S_f = \bar{\chi} M \chi/2$ is generalized as

 $S_f + S_J = \frac{1}{2} (\chi^T, \bar{\chi}) \tilde{M} \begin{pmatrix} \chi \\ \bar{\chi}^T \end{pmatrix}$, $\tilde{M} = \begin{pmatrix} \Phi & -M^T \\ M & -\Phi^\dagger \end{pmatrix}$, $\Phi^{ab}_{nn'} = 2J \epsilon^{abc} \phi_{n,c} \delta_{nn'}$.

- Complex Langevin Eq. is characterized by $S_{eff} = S_G (N_f/4) \text{Log} Pf[\tilde{M}]$.
- One might think of measuring $\langle \bar{\phi} \phi \rangle$ which is proportional to our target $\langle (\epsilon \bar{\chi} \bar{\chi}) (\epsilon \chi \chi) \rangle$. However this turns out to be too small: $\mathcal{O}(J^2)$.
- The relevant observable which we measure is the source-term itself

$$\frac{m_{\phi}^2}{2J} \cdot \langle \epsilon \chi \chi \phi + \epsilon \bar{\chi} \bar{\chi} \bar{\phi} \rangle , \qquad (8)$$

with various J. This observable is equivalent to $\langle (\epsilon \chi \bar{\chi}) (\epsilon \chi \chi) \rangle$, which is not straightforward to calculate (Tsutsui et al, PoS LAT2021).

Introduction	Complex Langevin Method	Result ••••••	Summary 00000
Table of Contents			

Introducti

- QCD Phase Diagram
- Strategy: Small-Box LQCD

Complex Langevin Method

- Complex Langevin Method in LQCD
- Source-Term Method

3 Result

- Basic Observables
- Response to Diquark Source-Term

Summary

-∢ ≣ ≯

Introduction	Complex Langevin Method	Result	Summary
000000000	0000	000000	00000

Setup

Figure:

Simulation points (blue circles) on the phase diagram predicted by the gap equation on the small-box LQCD.

·프 > · · · 프 > · · 프

- Small-box LQCD: $(L_s, L_t, m_{lat}, \beta) = (8, 128, 0.01, 20.0)$, which realizes a cold $(L_t/L_s \gg 1)$ and small-box LQCD $L_s a_{lat}(\beta) < \Lambda_{QCD}^{-1}$.
- At each simulation point, we investigate $\langle \epsilon \chi \chi \phi + h.c. \rangle$ for various *J*.

ntroduction	Complex Langevin Method	Result ○O●OOOO	Summary 00000

Example of Drift-Terms

- Left: An example of drift-terms Langevin trajectory.
- Right: A histogram for the fermion drift-term (blue trajectory in the left panel).
 - No Singular-Drift: The tail $v_{max} \ge 8$ is exponentially suppressed, $\propto e^{-3.0(2) \cdot v_{max}}$.
 - No-Excursion: $\mathcal{N}_U \sim \mathcal{O}(10^{-7})$.

Introduction 0000000000	Complex Langevin Method	Result	Summary 00000
Quark Number Density			

Figure: Quark number density vs. quark chemical potential (*T* units).

Stepwise Fermi-surface: $24 \cdot 1 \rightarrow 24 \cdot (1 + 6_{\vec{p}})$, where $24 = 4_{flv} \cdot 3_{col} \cdot 2_{spin}$.

★ E ▶ ★ E ▶ E = • • • • • •

Introduction	Complex Langevin Method	Result	Summary
000000000		○OOO●○○	00000
Chiral Condensate			

Figure: Chiral condensates vs. quark chemical potential (*T* units).

Chiral symmetry breaking tends to get restored with Fermi-surface formation. (N.B. Polyakov loops stay zero-consistent.)

< E

Introducti 00000	ion 00000			Complex Langevin Method	Result ○○○○○●○	Summary 00000
		_	~			

Diquark Source-Term: Summary

Figure: Comparison of Diquark Source Term vs. source-term coupling J.

Approaching the phase boundary from the normal phase to CSC, the response to J becomes more significant.

- (E) (E)

Introducti 00000	ion 00000			Complex Langevin Method	Result ○○○○○○●	Summary 00000
		_	~			

Diquark Source-Term: Summary

Figure: Comparison of Diquark Source Term vs quark chemical potential (7 Units).

Approaching the phase boundary from the normal phase to CSC, the response to J becomes more significant.

< E

000000000	0000	0000000	00000
000000000	0000	0000000	00000
Introduction	Complex Langevin Method	Result	Summary

- QCD Phase Diagram
- Strategy: Small-Box LQCD

Complex Langevin Method

- Complex Langevin Method in LQCD
- Source-Term Method

3 Result

- Basic Observables
- Response to Diquark Source-Term

4 Summary

글 🕨 🗶 글 🕨

Introduction	Complex Langevin Method	Result	Summary
000000000		0000000	0●000
Summary and Future Perspe	ctive		

- We have investigated a small-box lattice QCD at high density by using the complex Langevin method.
- We have invented the diquark source-term method and investigated the color-superconductivity in a gauge-invariant way.
- Approaching the phase boundary from the normal phase, a response to the source-term coupling *J* becomes more significant. This implies non-linear response associated with the CSC.
- A volume dependence of the above property is under investigation: Normal phase ⇒ Hadronic or Quarkyonic as L_sa_{lat}(β) exceeds Λ⁻¹_{QCD}?
- Ultimately, we will take (1) a infinite volume limit and then (2) $J \rightarrow 0$ limit to see whether the diquark-source term remains finite (color-superconductivity emerges).

Introduction	Complex Langevin Method	Result	Summary
000000000		0000000	00000
References			

- T. Yokota, Y. Ito, H. Matsufuru, Y. Namekawa, J. Nishimura, A. Tsuchiya and S. Tsutsui, JHEP 06 (2023), 061 [arXiv:2302.11273 [hep-lat]].
- S. Tsutsui, Y. Asano, Y. Ito, H. Matsufuru, Y. Namekawa, J. Nishimura, A. Tsuchiya and T. Yokota, PoS LATTICE2021, 533 (2022) [arXiv: 2111.15095 [hep-lat]].
- [3] Y. Ito, H. Matsufuru, Y. Namekawa, J. Nishimura, S. Shimasaki, A. Tsuchiya and S. Tsutsui, JHEP 10, 144 (2020) [arXiv: 2007.08778 [hep-lat]].
- [4] B.C. Barrois, Nucl. Phys. B **129** (1977) 390.
- [5] S.C. Frautschi, Springer, U.S.A. (1980), p.19 [DOI:10.1007/978-1-4684-3602-0_2].
- [6] D. Bailin and A. Love, Nucl. Phys. B 190 (1981) 175.
- [7] M.G. Alford, K. Rajagopal, and F. Wilczek, Phys. Lett. B 422 (1998) 247 [hep-ph/9711395].
- [8] M.G. Alford, A. Schmitt, K. Rajagopal, and T. Schäfer, Rev. Mod. Phys. 80 (2008) 1455 [arXiv:0709.4635].

★ E ▶ ★ E ▶ E E → O Q O

Introduction	Complex Langevin Method	Result	Summary
000000000		0000000	000€0
References			

- [9] L. McLerran and R. D. Pisarski, Nucl. Phys. A **796** (2007), 83-100 [arXiv:0706.2191 [hep-ph]].
- [10] Y. Hidaka, L. D. McLerran and R. D. Pisarski, Nucl. Phys. A 808 (2008), 117-123 [arXiv:0803.0279 [hep-ph]].
- [11] S. Hands, T.J. Hollowood, and J.C. Myers, JHEP 12 (2010) 057 [arXiv:1010.0790].
- [12] S. Hands, T.J. Hollowood, and J.C. Myers, JHEP 07 (2010) 086 [arXiv:1003.5813].
- [13] S. Hands and D.N. Walters, Phys. Lett. B 548 (2002) 196 [hep-lat/0209140].

Introduction	Complex Langevin Method	Result	Summary
000000000		0000000	0000●
References			

- [14] G. Parisi, Phys. Lett. B 131 (1983) 393.
- [15] J.R. Klauder, Phys. Rev. A 29 (1984) 2036.
- [16] G. Aarts, E. Seiler, and I.-O. Stamatescu, Phys. Rev. D 81 (2010) 054508 [arXiv:0912.3360].
- [17] G. Aarts, F.A. James, E. Seiler, and I.-O. Stamatescu, Eur. Phys. J. C 71 (2011) 1756 [arXiv:1101.3270].
- [18] E. Seiler, D. Sexty, and I. O. Stamatescu, Phys. Lett. B 723, 213-216 (2013) [arXiv:1211.3709 [hep-lat]].
- [19] Z. Fodor, S.D. Katz, D. Sexty and C. Török, Phys. Rev. D 92 (2015) 094516 [arXiv:1508.05260].
- [20] K. Nagata, J. Nishimura and S. Shimasaki, PTEP 2016 (2016) no.1, 013B01 [arXiv:1508.02377 [hep-lat]].
- [21] K. Nagata, J. Nishimura, and S. Shimasaki, Phys. Rev. D 94, no.11, 114515 (2016) [arXiv:1606.07627 [hep-lat]].
- [22] J.B. Kogut and D.K. Sinclair, Phys. Rev. D 100 (2019) 054512 [arXiv:1903.02622].

Backups

Neutron Star Phenomenology

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• Tolman–Oppenheimer–Volkoff (TOV) Equation:

$$\frac{dP(r)}{dr} = -G\frac{(M(r) + 4\pi r^3 P(r)/c^2)(E^2 + P^2)/c^2}{r^2(1 - 2GM/(rc^2))} , \quad \frac{dM(r)}{dr} = \frac{4\pi r^2 E}{c^2} .$$
 (9)

- TOV Eq. is a static balance condition between neutron-star pressure and gravity in general relativity: $P(r + dr) P(r) \sim GM(r)dr/r^2$.
- When the neutron-star EoS (P = f(E)) is combined with TOV Eq., M R relation is extracted.

★ E ★ E ★ E = 9QQ

Neutron Star Strcture

Fig: Neutron star inner structure. Quoted from

[F. Weber, J. Phys. G: Nucl. Part. Phys. 27 (2001)]

イロト イヨト イヨト イヨト

Fig: Various neutron star equation of state (EoS). Quoted from [F. Weber, J. Phys. G: Nucl. Part. Phys. 27 (2001)].

4 3 4 4 3

Neutron Star Mass: Observation

Fig: Summary of neutron star masses. The update of [PRL'05, J. Lattimer et al.]:

イロト イヨト イヨト イヨト

https://stellarcollapse.org/index.php/nsmasses.html

-2

Neutron Star M - R Relation

Fig: Various M - R relations. Quoted from [Nature'10, vol.467, P. Demorest et al.].

- E - - E

-