't Hooft line in 4D U(1) lattice gauge theory, and microscopic descriptions of dyon's statistics

Soma Onoda (Kyushu U.)

11/12/2024@KEK-Theory Workshop 2024

SO, arXiv:2412.xxxxx (to appear)

't Hooft lines with θ term

- ► Monopole: A singular nature of gauge theories $\frac{1}{2\pi} \oint_{S^2} f \in \mathbb{Z}$ Here, S^2 is a closed surface wrapping a monopole
- 't Hooft lines are world lines of monopoles
- ▶ In the presence of θ term in the action: $\frac{i\theta}{8\pi^2} \int_{M_4} f \wedge f \in i\theta\mathbb{Z}$, monopoles obtain electric charges:

$$(0, m_{ ext{mag}})_{ heta} = (rac{m_{ ext{mag}} heta}{2\pi}, m_{ ext{mag}})_{ heta=0}$$

 \implies Witten effect (Witten'79) A monopole becomes a dyon

Line operator level, 't Hooft line becomes a dyonic "surface" $\langle H(C)^{m_{mag}} \rangle_{\theta} = \langle H(C)^{m_{mag}} e^{\frac{im_{mag}\theta}{2\pi} \int_{S} f} \rangle_{\theta=0}, \quad C = \partial S$

► Especially, when $\theta = 2\pi$ (generally, $\frac{m_{mag}\theta}{2\pi} \in \mathbb{Z}$), the dyonic "surface" becomes "line" operator (Dirac quantizatioin): $e^{\frac{im_{mag}\theta}{2\pi}\int_{S}f} = e^{im_{mag}\oint_{C}a}$

What I want to do on a lattice

My mind: Lattice provide yet another viewpoints, and they are easier and "visible" compared to continuum What I want to reproduce on a lattice:

• Witten effect: $\langle H(C)^{m_{mag}} \rangle_{\theta} = \langle H(C)^{m_{mag}} e^{\frac{im_{mag}\theta}{2\pi} \int_{S} f} \rangle_{\theta=0}$

► When $\frac{m_{mag}\theta}{2\pi} \in \mathbb{Z}$, the dyonic surface becomes "line" $e^{\frac{im_{mag}\theta}{2\pi}\int_{S}f} = e^{i\oint_{C}a}$

A line op. satisfying the Dirac quantization should be a

genuine line op. Aharony, Seiberg, Tachikawa'13 Kapustin, Seiberg'14
 Statistical shift of dyons Goldhaber'76 Metlitski, Kane, Fisher'13
 Even though both (1,0) and (0,1) are bosons, the dyon (1,1) becomes fermion Generally, (^{mmagθ}/_{2π}, mmag) becomes anyonic ⇒ Witten effect should also capture such statistical nature

Lattice formulation of U(1) Maxwell-th in 4D

Considering 4D U(1) Maxwell-th on the Euclidian lattice ($\cong T^4$) Compact gauge field on link: $u_{\mu}(n) \in U(1)$ $f_{\mu\nu}(n) \equiv \frac{1}{i} \ln \Box = \Delta_{\mu} a_{\nu}(n) - \Delta_{\nu} a_{\mu}(n) + 2\pi z_{\mu\nu}(n), \ z_{\mu\nu}(n) \in \mathbb{Z}$ Action: $S_{\text{Maxwell}} \equiv \sum_{n} \frac{1}{4g_0^2} f_{\mu\nu}(n) f_{\mu\nu}(n) - \frac{i\theta}{8\pi^2} \sum_{h \in M_4} (f \cup f)_h$ \cup : Lattice analogue of \wedge (preserving Leibniz rule) We assume the **smoothness** called admissibility condition(Lüscher '82...): $\sup |f| < \epsilon, \ 0 < \epsilon < \frac{\pi}{3} \Longrightarrow (\frac{df}{2\pi})_c = (dz)_c = 0$ e.g. $df = \Delta_{\mu}(\epsilon_{\mu\nu\rho}f_{\mu\nu})$

Then, we can show (e.g. Fujiwara, Suzuki, Wu '00):

$$\frac{i\theta}{8\pi^2}\sum_{h\in M_4}(f\cup f)_h=\frac{i\theta}{2}\sum_{h\in M_4}(z\cup z)_h=i\theta\mathbb{Z}$$

 θ term is **topologocal** even on the lattice

Excision method

To introduce 't Hooft line on the lattice, We make a **boundary** $(\partial M_4 = S^2 \times S^1) \Longrightarrow$ **Excision method** (2D case Abe, et.al. '23) 't Hooft line $H^{m_{mag}}(S^1)$: $\frac{1}{2\pi} \sum_{p \in S^2} f_p = m_{mag} \in \mathbb{Z}$, $|S^2| > \frac{2\pi |m_{mag}|}{\epsilon}$ (Proof sketch)

In the case of $m_{\text{mag}} = 1$, $f_p = \frac{2\pi}{5}$, S = # of plaquette in the S^2 If S is small like a cube (e.g. $S = 6 \Longrightarrow f_p = \frac{\pi}{3}$), Х T then inconsistent with admissibility $\sup|f|<\epsilon<\frac{\pi}{2}$ When S is large, f_p can be small $\implies f_p$ can be admissible while preserving $\frac{1}{2\pi} \sum_{p \in S^2} f_p \neq 0$ \implies A monopole definition as a "hole" Prepare a certain 3-ball \mathcal{B}_3 and remove the lattice in \mathcal{B}_3 . $\implies \partial \mathcal{B}_3 = S^2$, extending to "time-direction" \rightarrow 't Hooft loop

Witten effect

$$\frac{i\theta}{8\pi^2} \sum_{h \in M_4} (f \cup f)_h$$

$$= \underbrace{\frac{i\theta}{4\pi} \sum_{c \in \partial M_4} (\frac{a \cup da}{2\pi} + a \cup z + z \cup a)_c + \frac{i\theta}{2} \sum_{h \in M_4} (z \cup z)_h}_{\text{level } \theta \text{ Chern-Simons(CS)}}$$

$$dz = 0 \Longrightarrow z|_{\partial M_4} = \delta(\text{non-contractible loop}) + \delta(\text{contractible loop})$$

$$\frac{i\theta}{4\pi} \sum_{c \in \partial M_4} (a \cup z + z \cup a)_c = \frac{i\theta}{4\pi} (\sum_{\text{non-contractible loop}} a + \sum_{\text{shifted}} a)^{-1/2}$$
The # of "non-contractible loop" = m_{mag}
$$\Longrightarrow m_{mag} - \text{Wilson loops along the } S^1 \text{ are induced on the 't Hooft}$$

$$\text{loop ("hole"} \cong S^2 \times S^1) \Longrightarrow \text{Witten effect}$$

$$\text{In (naive) continuum limit,} \approx \frac{im_{mag}\theta}{2\pi} \int_{\mathcal{R}} f + i\theta\mathbb{Z}, \quad \partial\mathcal{R} = \text{the } S^1$$

Statistical shift of dyons: A lattice description

$$\frac{i\theta}{4\pi} \sum_{c \in \partial M_4} (\frac{a \cup da}{2\pi} + \underbrace{a \cup z + z \cup a}_{\text{Lattice captures that nature!}})_c$$

The CS term contain Wilson loops (due to Witten effect) Gauge transf. $a \rightarrow a + d\lambda + 2\pi r$, $z \rightarrow z - dr$, $r \in \mathbb{Z}$ $dr = \delta$ (contractible loop) \Longrightarrow Gauge transf. deform Wilson loops Actually, the CS is **not** gauge-inv.

$$(\mathsf{CS}) \to (\mathsf{CS}) + \frac{i\theta}{2} \underbrace{(r \cup z + z \cup r + \mathrm{d}r \cup r)}_{\# \text{ of "twists" caused by } \mathrm{d}r}$$

$$\theta = 2\pi \Longrightarrow e^{i\pi \times \#} \Longrightarrow$$
 Fermionic!
 $\theta = \frac{2\pi p}{N} \Longrightarrow e^{\frac{\pi p i}{N} \times \#} \Longrightarrow$ Anyonic!

2→2-dr

How about bulk term? $\frac{i\theta}{2}\sum_{h\in M_4}(z\cup z)_h$

Naively, the bulk dependence implies **non-genuine** op.

In the case of $\theta = 2\pi$: $e^{i\pi \sum_{h \in M_4} (z \cup z)_h} = e^{i\sum_{p \in \Sigma} z_p} \mathcal{Z}_{\gamma,\partial M_4}[z]$ Chen'19

$$\begin{aligned} \mathcal{Z}_{\gamma,\partial M_4}[z] &\equiv \left(\prod_{p \in \partial M_4} \int \mathrm{d}\gamma_p \, \mathrm{d}\bar{\gamma}_p\right) \left(\prod_{c \in \partial M_4} h_c[z]\right) \left(\prod_{p \in \partial M_4} (1 + \bar{\gamma}_p \gamma_p)\right) \\ h_c[z] &\equiv \gamma_{c+\hat{x}/2}^{z_{c+\hat{x}/2}} \, \gamma_{c-\hat{z}/2}^{z_{c-\hat{x}/2}} \, \gamma_{c+\hat{y}/2}^{z_{c+\hat{y}/2}} \, \bar{\gamma}_{c-\hat{x}/2}^{z_{c-\hat{x}/2}} \, \bar{\gamma}_{c+\hat{z}/2}^{z_{c+\hat{y}/2}} \, \bar{\gamma}_{c-\hat{y}/2}^{z_{c-\hat{y}/2}} \end{aligned}$$

That is a theory of fermionic world lines along $[z] (z \equiv \delta([z]))$, and can be written by **d.o.f on** ∂M_4

 \implies We can obtain fermionic **genuine** line

 $\psi \rightarrow ()$

In the case of $\theta = \frac{2\pi p}{N}$, $m_{mag} = N$, $\frac{m_{mag}\theta}{2\pi} \in \mathbb{Z}$, $N \in \text{odd}$: $e^{\frac{i\pi p}{N}\sum_{h\in M_4}(z\cup z)_h} = (e^{i\sum_{p\in\Sigma} z_p} \mathcal{Z}_{\gamma,\partial M_4}[z])^p \times \# \cdot \mathcal{Z}^{p(N+1)}_{\partial M_4\cong S^2 \times S^1}[z]$ $\mathcal{Z}^{p(N+1)}_{\partial M_4\cong S^2 \times S^1}$ is the non-invertible axial symmetry op. (cf. Honda, Morikawa, SO, Suzuki'24) Here,

$$\mathcal{Z}_{S^2 \times S^1}^{p(N+1)}[z] \propto (\prod_{\ell \in \partial M_4} \int \mathrm{d} c_\ell) \delta_N[(\mathrm{d} c_\ell - z)_p] e^{-\frac{ip(N+1)\pi}{N} \sum_{c \in S^2 \times S^1} (z \cup c)_c}$$

 $e^{-\frac{ip(N+1)\pi}{N}\sum_{c\in S^2\times S^1}(z\cup c)_c}$ can be interpreted as a anyonic line along [z] and can be written by **d.o.f on** ∂M_4 \implies We can obtain anyonic **genuine** line

 $(//) \longrightarrow ()$

't Hooft anomaly captures the dyon's statistics

4D Maxwell th. has global \mathbb{Z}_{N^e} 1-form symmetry: $u_{\mu} \to e^{\frac{2\pi i}{N^e}p_{\mu}}u_{\mu}$ Gauging \Longrightarrow Coupling 2-form gauge field B^e to U(1) gauge field $\Box \to \Box e^{\frac{2\pi i}{N^e}B^e_{\mu\nu}(n)} B^e_{\mu\nu} \to B^e_{\mu\nu} - \Delta_{\mu}p_{\nu} + \Delta_{\nu}p_{\mu} \mod N^e$ $f^{B^e} \equiv \frac{1}{i} \ln \Box e^{\frac{2\pi i}{N^e}B^e} = da + 2\pi z + \frac{2\pi}{N^e}B^e$

Admissibility is modified:

 $\sup |f^{B^e}| < \epsilon, \ 0 < \epsilon < \frac{\pi}{3N^e} \Longrightarrow (\frac{\mathrm{d}f^{B^e}}{2\pi})_c = (\mathrm{d}(z + \frac{B^e}{N^e}))_c = 0$ In the presence of the "hole", We can define conserved magnetic charge:

$$m_{mag} = \frac{1}{2\pi} \sum_{p \in S^2} f^{B^e} = \sum_{p \in S^2} (z + \frac{B^e}{N^e})_p \in \frac{\mathbb{Z}}{N^e}$$

Unit of m_{mag} becomes $\frac{1}{N^e}$

Gauged action:
$$S_{\text{Maxwell}}[B^e] \equiv S_{\text{kinetic term}}[B^e] - S_{\theta}[B^e]$$

 $S_{\theta}[B^e] \equiv \frac{i\theta}{8\pi^2} \sum_{h \in M_4} (f^{B^e} \cup f^{B^e})_h$
 $= \frac{i\theta}{8\pi^2} \sum_{c \in \partial M_4} \left[\{a \cup da + 2\pi a \cup (z + \frac{B^e}{N^e}) + 2\pi (z + \frac{B^e}{N^e}) \cup a\} \right]_c$
 $+ \frac{i\theta}{2} \sum_{h \in M_4} \{(z + \frac{B^e}{N^e}) \cup (z + \frac{B^e}{N^e})\}_h$

Considering a shift $\theta \to \theta + 2\pi \textit{N}^e$

 $\Delta S[B^e] =$ (level N^e Chern–Simons th. coupled w/ B^e on 't Hooft loop)

$$+i\pi N^e \sum_{h\in M_4} \{(z+\frac{B^e}{N^e})\cup (z+\frac{B^e}{N^e})\}_h$$

Bulk dependence:

 $\exp\left\{\frac{2\pi i}{2N^e}\sum_{h\in\mathcal{M}_4}\left\{\left(N^e z+B^e\right)\cup\left(N^e z+B^e\right)\right\}_h\right\}=$ $\begin{cases} e^{i\pi\sum_{\partial M_4}B\cup_1 z} e^{\frac{2\pi i}{2N^e}\sum_{h\in M_4}P_2(B^e)} & (N^e \in \text{even}) \\ e^{i\sum_{p\in\Sigma}(N^e z+B^e)_p} \mathcal{Z}_{\gamma,\partial M_4}[N^e z+B^e] e^{\frac{2\pi i(N^e+1)}{2N^e}\sum_{h\in M_4}P_2(B^e)} & (N^e \in \text{odd}) \end{cases}$ $(N^e \in even)$ The bulk terms only depend on $B^e \implies$ level N^e 3d Chern–Simons th. has **'t Hooft anomaly** for \mathbb{Z}_{N^e} 1-form symmetry (Gaiotto, Kapustin, Seiberg, Willet'14, Jacobson, Sulejmanpasic'23...) Generally, 't Hooft anomalies imply non-trivial statistics of symmetry operator (e.g. Projective representation) \mathbb{Z}_{N^e} 1-form sym. op. in 3d CS th. \rightarrow (framed) Wilson lines (framed) Wilson lines $\frac{iN^e}{2} \sum_{t \text{ Hooft loop}} \left[a \cup \left(z + \frac{B^e}{N^e}\right) + \left(z + \frac{B^e}{N^e}\right) \cup a \right]_c$ \implies Contribute to the dyon's statictics !

Summary and Future Directions

Summary

Using the definition of the lattice 't Hooft line based on the Excision method, we achieve direct and intuitive understandings of the Witten effect and the non-trivial statistics of dyons Natures of CS th. (especially gauge covariance) are crucial

Future Directions

- ▶ fermion+boson or fermion+fermion cases cf. Gaiotto, Kapustin '15
- Non-abelian cases

Our "admissible method" would apply to non-abelian cases

Back up

Correspondence of θ between \mathbb{Z}_N gauging case and usual U(1) case

$$2\pi N_e \iff \frac{2\pi}{N_e}$$
 "Anyonic case"
 $2\pi N_e^2 \iff 2\pi$ "Fermionic case"

That observations are consistent with the fact:

e.g. Choi, Cordva, Hsin, Lam, Shao'21

$$\tau \xrightarrow{\mathbb{Z}_{N_e} \text{ gauging}} \xrightarrow{\tau}_{N_e^2} \text{Especially, } \theta \to \frac{\theta}{N_e^2}$$
$$(\tau \equiv \frac{4\pi i}{g^2} + \frac{\theta}{2\pi})$$