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Introduction

/d dim U(N) Yang-Mills theory (+ adjoint matters) (d=21) N — oo \

Finite temperature CQ ( <>

\Fmd a scaling relation with respect to temperature in loop equation)

(. Strong constraints on the Polyakov loop effective potential

= Gauge theory version
|:>< of the Landau—Ginzburg theory

* Strong constraints on various observables.

v Non-perturbative relation independent of the details of the models.
v’ Itis applicable not only to the thermal S5 but also to any S*.
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1. Loop equation at finite temperature (review)
2. Scaling relation in loop equation

3. The Polyakov loop effective potential at large-N

4. Summary



1. Loop equation at finite temperature

U(N) d-dim YM theory (d=1)
(+ adjoint matters &(x) )

% Building blocks of gauge theory

— Loop operator for contour C' := W (C)
% Winding loop operators

v fpen ([ )], G [ron (s [ o] . e emperare
> D (((((0 |
\ v ’I’L

Contour winding n times

= W(Ch) =W (C,)
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1. Loop equation at finite temperature

U(N) d-dim YM theory (d=1)
(+ adjoint matters &(x) )

% Building blocks of gauge theory

— Loop operator for contour C' := W (C)
% Winding loop operators

Yoo ()] Sfpen (s [ a)a]. 3TN temperae
O O (((((0
— Ch
Y Contour winding n times
= W(Co) = W(C,)

% Loop equation (Schwinger-Dyson eq.): non-perturbative correlation for W (C)

Roughly the following expression. Makeenko-Migdal (1979), Eguchi-Kawai (1982), Gocksch-Neri (1983)
g :

(W (Cp)) = Z(W(Cm_k»(W(Ck» + O(l/N2) (S = A local insertion of
k an Euler-Lagrange eq..
ex) m=2 Features

(» Conservation of the winding number.
6 A ' « No explicit temperature dependence.
| |
CQ : | 0 Cl : | Cl < (6 is independent of temperature).
* Large-N factorization. 5/16
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1. Loop equation at finite temperature

_— U(N) d-dim YM theory (d=1)
uildine blocks of sause theor .
* & = (+ adjoint matters ®(x))
—> | Temperature < non-zero (W (C',))
% Winding loop operators
;TTF 6 A T+ ,6 W(C1) is an “open” Wilson line. at finite temperature
C —> This can be non-zero Sﬁ
1* due to the periodicity (‘(((‘
1 = A7+ B) = A7),
B l T (W(C4)) # 0~ Temperature Cn
dependence in Contour winding n times
A4 .
the loop equations. — W(Cn)
% Loop equation (SChWIRger-Dyson eq.): non-perturbative correlation for W (C)
Roughly, the following EXDFESSiO . Makeenko-Migdal (1979), Eguchi-Kawai (1982), Gocksch-Neri (1983)
(W (Cp)) = Z(W(Cm—k)><W k) + O(l/N2) (S = A local insertion of
k an Euler-Lagrange eq..
ex) m=2 Features

* Conservation of the winding number.
6 A No explicit temperature dependence.
l l
CQ : ! 0 Cl : Cl < (6 is independent of temperature).
* Large-N factorization. 6/16
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2. Scaling relation in loop equation Azuma-T.M. 2024

% Loop equation

<5W(Cm)> — Z(W(Cm—k)><w(ck)> T O(l/NQ) (5 = Alocal insertion of

k

an Euler-Lagrange eq..
ex) m=2 Features

(» Conservation of the winding number.
B I\ : * No explicit temperature dependence.
l l
CQ : | 0 Cl : ! Cl < (6 is independent of temperature).
e Large-N factorization.

. 4

/Scaling relation: For any natural number m, we can show \

(W(Crm)) = (W(Cn))

Loop equation at 3 with the substitution
(W(CW) =0 (n ¢ mZ)

\ = Loop equation at mp (N — 00) /

# This is for bosonic systems. Need a modification for fermions, which | skip in this talk. 8/16



2. Scaling relation in loop equation Azuma-T.M. 2024
ex) m=2 case Mirror images
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/Scaling relation: For any natural number m, we can show \

(W(Crm)) = (W(Cn))

Loop equation at 3 with the substitution
(W(CW) =0 (n ¢ mZ)

\ = Loop equation at mp (N — 00) /

# This is for bosonic systems. Need a modification for fermions, which | skip in this talk. 9/16



2. Scaling relation in loop equation Azuma-T.M. 2024
ex) m=2 case Mirror images

.n ! A
. | L 1/ I\ VvV

NG
| ST/}

Dropping the odd x
winding loops Clo ¢1 C Q/S Cy 5

A4
Only the loops at 25 —00 < T < 00
survive.
L, ¢
/Scaling relation: For any natural number m, we can show \

Loop equation at 3 with the substitution {ZZEZZB’;)L_O) <Z(§7;1>Z)

\ = Loop equation at mp (N — 00) /

# This is for bosonic systems. Need a modification for fermions, which | skip in this talk. 10/16
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3. The Polyakov loop effective potential at large-N Azuma-T.m. 2024

(Review) The low effective theory of finite temperature gauge theories

Order parameter:

w, = iTr ( o St A, dT) Polyakov loop operators winding
the temporal circle n times.

N
1 pla) 0.4
Sp & Eigenvalue distribution
<> of A,
U1 Up P SR R i

All {u,} are required
to represent the phases.

The effective potential (LG theory): V(B, {un})

Constraint: Winding number conservation UpUmty —n+m+1=0

n=1

The coefficients €(5), an(5), bn(ﬁ), -+ - are determined depending on the details of the models.

N — o0 €(B) = € Gocksch-Neri (1983)

Infinitely many constraints are imposed from our scaling relation!



3. The Polyakov loop effective potential at large-N Azuma-T.m. 2024

(W(Chm)) = (W(Ch))

Loop equation at 5 with the substitution
(W(Chn)) =0 (n ¢ mZ)

—> V/(8,{un}) has to satisfy the following relation for any m:
V(B? {un})‘un:() (anZ) Umn —>Un — V(mﬁﬂ {Un})

V(B ) = Z Bt n + 3 b (Bpiut, + o

[ «(B)=¢

N o« o o

\vw, {un}) =+ ar(nBlupu_n + Y bi(nBuju’,, +
n=1 n=1

/Scaling relation N

S = Loop equation at mp (N — 00) -

< an(B) = a1(nf) Al the coefficients are strongly constrained.
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3. The Polyakov loop effective potential at large-N Azuma-T.m. 2024

V(B,{un}) =€+ Z a1 (nB)upu—_n + Z by (nﬁ)uiu%n + ...
n=1 n=1

% Effective potential > physical quantities

Ex) Up, inthe confinement phase: Uy = %Tr (Pei I3’ ATdT)
1
u (1)) = —(|u, (nT — Any adjoint large-N gauge theories
<’ ( )D \/ﬁ <| n( )|> satisfy this relation if it is confined.

Note) {u,} are zero in the confinement phase, but their ratios are finite.
4

(un(T)])/ v/

0.04

Ex) Bosonic BFSS matrix model (Monte-Carlo)

3 D 4 , e 0035 | | | |
_ I I J12 - el ¥ B T T L T e e e e—— — e —
S—/OdtTr{ZE(DtX ) - > XX } D=3, N=30 00522. | ? |
I=1 I,J=1 : ]

. . . 0.02

Line: scaling relation o415 |

Dots: numerical results 01|
0.005 T=n/6 '

- Good agreement %, 7 2 & 4 5 o
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Summary

/U ) d-dim Yang-Mills theory (+ adjoint matters) (d=1) N — oo \

S5
Finite temperature <Q (()

\_ — Scaling relation in the loop equations. Y

v Non-perturbative relation independent of the details of the models.
v’ It is applicable not only to the thermal S; but also to any S*.

: <f * Strong constraints on the Polyakov loop effective potential

\_* Strong constraints on various observables.

Future directions

* Application to various adjoint theories.

e Gauge/gravity correspondence - scaling relation in string theory?
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