Narain CFTs from Error-Correcting Codes via Integers of Cyclotomic Field

Takumi Oikawa

The Graduate University for Advanced Studies, SOKENDAI

Based on arXiv:2410.12488 with Shun'ya Mizoguchi

Introduction

• **Error-correcting code** is useful for the construction of CFTs.

Indeed, some 2d chiral CFTs can be constructed from a certain class of CECCs via Eucledean lattices. The state of the state of the state of the state of Dolan-Goddard-Montague '90, '96]

Introduction

• **Error-correcting code** is useful for the construction of CFTs.

Indeed, some 2d chiral CFTs can be constructed from a certain class of CECCs via Eucledean lattices. The state of the state of the state of the state of Dolan-Goddard-Montague '90, '96]

• In recent years, this construction was generalized to the case of QECCs.

[Dymarsky-Shapere '20]

Overview (1/2)

- We focus on the **Narain CFT**, which is the theory of *n* free bosons $X^i(\tau, \sigma)$ compactified on an *n*-dimensional torus. [Narain '86] [Narain-Sarmadi-Witten '87]
- \bullet The momentum (\vec{p}_L, \vec{p}_R) forms the **Lorentzian even self-dual lattice** $\Lambda \subset \mathbb{R}^{n,n}.$
	- \implies They can be constructed from CECCs, and then related to QECCs. [Dymarsky-Shapere '20] [Kawabata-Nishioka-Okuda '23]

Overview (2/2)

- However, the way to associate Euclidean lattices with CECCs is not unique. [Conway-Sloane '87] [Ebeling '94] ...
- Inspired by the earlier works, we construct the Lorentzian lattice from CECCs using **integers of cyclotomic field**.
	- =⇒ We obtain a broader class of corresponding Narain CFTs. [Mizoguchi-TO '24]

1. [Introduction](#page-1-0)

2. [Classical error-correction codes and lattices](#page-5-0)

3. [Construction of Narain lattice \(Construction A\)](#page-15-0)

4. [Generalization of Construction A via cyclotomic field](#page-22-0)

Classical error correction

- The important point of CECC is to add the **redundancy** into original messages.
- A simple example is to repeat each bit three times (**repetition code**).

Then, $\mathbb{F}_2 = \{0, 1\}$ is embedded into \mathbb{F}_2^3 as $\mathcal{C} = \{000, 111\} \subset \mathbb{F}_2^3$.

• In this case, Bob can correct one bit-flip error by majority vote.

Classical error-correcting code

• We consider length-*n* CECCs over $\mathbb{F}_p = \{0, 1, \dots, p-1\}.$

Thus, we encode k -bit original messages $x \in \mathbb{F}_p^k$ into n -bit $\textbf{codewords}\,\,c \in \mathbb{F}_p^n.$

Classical error-correcting code

• We consider length-*n* CECCs over $\mathbb{F}_p = \{0, 1, \dots, p-1\}$.

Thus, we encode k -bit original messages $x \in \mathbb{F}_p^k$ into n -bit $\textbf{codewords}\,\,c \in \mathbb{F}_p^n.$

$\mathsf{Definition:}\ \left[n,k\right] _{p}% =\{1,2,3\}$ code

A p -ary linear code $\mathcal{C} \subset \mathbb{F}_p^n$ is defined as a set of codewords $c \in \mathbb{F}_p^n$ generated by the \mathbb{F}_p -valued $k \times n$ matrix G ,

$$
\mathcal{C} = \left\{ c \in \mathbb{F}_p^n \mid c = xG, \ x \in \mathbb{F}_p^k \right\}.
$$

Dual code

• For the construction of even self-dual lattices, we introduce dual codes.

Definition: Dual code

For an $\left[n,k\right] _{p}$ code $\mathcal{C}.$ the $\mathbf{dual\ code}$ of \mathcal{C} is defined as

$$
\mathcal{C}^{\perp} = \left\{ c' \in \mathbb{F}_p^n \mid c \cdot c' = 0 \mod p, \ c \in \mathcal{C} \right\}.
$$

Here, the inner product is the standard Euclidean norm $c\cdot c' = \sum_{i=1}^n c_i c'_i.$

Dual code

• For the construction of even self-dual lattices, we introduce dual codes.

Definition: Dual code

For an $\left[n,k\right] _{p}$ code $\mathcal{C}.$ the $\mathbf{dual\ code}$ of \mathcal{C} is defined as

$$
\mathcal{C}^{\perp} = \left\{ c' \in \mathbb{F}_p^n \mid c \cdot c' = 0 \mod p, \ c \in \mathcal{C} \right\}.
$$

Here, the inner product is the standard Euclidean norm $c\cdot c' = \sum_{i=1}^n c_i c'_i.$

• If C satisfies $C \subset C^{\perp}$, then C is called **self-orthogonal**.

Especially, C is called **self-dual** if and only if C satisfies $C = C^{\perp}$.

Construction A

• We construct the Euclidean lattice from CECCs via the **Construction A**.

[Leech-Sloane '71]

Definition: Construction A

For an $\left[n,k\right] _{p}$ code $\mathcal{C}.$ we define the Construction A lattice $\Lambda(\mathcal{C})$ as

$$
\Lambda(\mathcal{C})\coloneqq \frac{1}{\sqrt{p}}\rho^{-1}(\mathcal{C}),\; \text{where}\; \rho\colon \mathbb{Z}^n\to (\mathbb{Z}/p\mathbb{Z})^n=\mathbb{F}_p^n.
$$

Construction A

• We construct the Euclidean lattice from CECCs via the **Construction A**.

[Leech-Sloane '71]

Definition: Construction A

For an $\left[n,k\right] _{p}$ code $\mathcal{C}.$ we define the Construction A lattice $\Lambda(\mathcal{C})$ as

$$
\Lambda(\mathcal{C})\coloneqq \frac{1}{\sqrt{p}}\rho^{-1}(\mathcal{C}),\; \text{where}\; \rho\colon \mathbb{Z}^n\to (\mathbb{Z}/p\mathbb{Z})^n=\mathbb{F}_p^n.
$$

• The lattice vectors $\lambda \in \Lambda(\mathcal{C})$ are given by identifying with $c \in \mathcal{C}$ under mod p,

$$
\lambda=\frac{c+pm}{\sqrt{p}}, \text{ for } c\in\mathcal{C}, \ m\in\mathbb{Z}^n.
$$

Construction A (example)

 \bullet Consider $\mathcal{C} = \{00,11\} \subset \mathbb{F}_2^2$ and then, construct the Construction A lattice $\Lambda(\mathcal{C})$.

The lattice vectors $\lambda \in \Lambda(\mathcal{C})$ are given by identifying with $c \in \mathcal{C}$ under mod 2:

$$
\lambda = \frac{c + 2m}{\sqrt{2}}, \quad \text{for } c \in \mathcal{C}, \ m \in \mathbb{Z}^2
$$

Construction A (example)

 \bullet Consider $\mathcal{C} = \{00,11\} \subset \mathbb{F}_2^2$ and then, construct the Construction A lattice $\Lambda(\mathcal{C})$.

The lattice vectors $\lambda \in \Lambda(\mathcal{C})$ are given by identifying with $c \in \mathcal{C}$ under mod 2:

$$
\lambda = \frac{c+2m}{\sqrt{2}}, \quad \text{for } c \in \mathcal{C}, \ m \in \mathbb{Z}^2
$$

• Then, $\Lambda(\mathcal{C})$ consists of two types of points:

$$
(0,0)+\sqrt{2}m \quad \text{and} \quad \left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)+\sqrt{2}m.
$$

Therefore,

$$
\Lambda(\mathcal{C}) = \left[\sqrt{2}\mathbb{Z}^2\right] \ \bigcup \ \left[\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) + \sqrt{2}\mathbb{Z}^2\right].
$$

1. [Introduction](#page-1-0)

2. [Classical error-correction codes and lattices](#page-5-0)

3. [Construction of Narain lattice \(Construction A\)](#page-15-0)

4. [Generalization of Construction A via cyclotomic field](#page-22-0)

Narain CFT

• We focus on the **Narain CFT**, which is the theory of *n* free bosons $X^i(\tau, \sigma)$ compactified on an *n*-dimensional torus R *ⁿ/*(2*π*Γ); [Narain '86] [Narain-Sarmadi-Witten '87]

$$
S = \frac{1}{8\pi} \int dt \int_0^{2\pi} d\sigma \Big[G_{ij} \Big(\partial_t X^i \, \partial_t X^j - \partial_\sigma X^i \, \partial_\sigma X^j \Big) - 2B_{ij} \, \partial_t X^i \, \partial_\sigma X^j \Big],
$$

where *G* (and *B*) are $n \times n$ constant (anti-) symmetric matrix, respectively.

 \bullet The set of momentum (\vec{p}_L, \vec{p}_R) forms a lattice $\tilde{\Lambda} = \{(\vec{p}_L, \vec{p}_R) \mid \vec{m}, \vec{w} \in \mathbb{Z}^n\} \subset \mathbb{R}^{2n}$,

$$
\vec{p}_{L_i} = \frac{m_i}{R} + \frac{R}{2}(B_{ij} + G_{ij})w^j, \quad \vec{p}_{R_i} = \frac{m_i}{R} + \frac{R}{2}(B_{ij} - G_{ij})w^j.
$$

Lorentzian even self-dual lattice

• We introduce another convention of (\vec{p}_L, \vec{p}_R) as

$$
\Lambda \coloneqq (\lambda_1, \lambda_2) = \left\{ \left(\frac{\vec{p}_L - \vec{p}_R}{\sqrt{2}}, \frac{\vec{p}_L + \vec{p}_R}{\sqrt{2}} \right) \middle| \vec{m}, \vec{w} \in \mathbb{Z}^n \right\}.
$$

Lorentzian even self-dual lattice

• We introduce another convention of (\vec{p}_L, \vec{p}_R) as

$$
\Lambda \coloneqq (\lambda_1, \lambda_2) = \left\{ \left(\frac{\vec{p}_L - \vec{p}_R}{\sqrt{2}}, \frac{\vec{p}_L + \vec{p}_R}{\sqrt{2}} \right) \middle| \vec{m}, \vec{w} \in \mathbb{Z}^n \right\}.
$$

• This Narain lattice $\Lambda \subset \mathbb{R}^{n,n}$ forms the even self-dual lattice w.r.t. Lorentzian off-diagonal metric $\eta =$ $\sqrt{ }$ $\overline{1}$ 0 *Iⁿ* $I_n \quad 0$ \setminus \cdot

Definition: Even self-dual lattice

A **dual lattice** is defined as $\Lambda^* = \{x' \in \mathbb{R}^n \mid x \odot x' \in \mathbb{Z}, \ \forall x \in \mathbb{Z}\}$ w.r.t. η . Then a lattice Λ is **self-dual** iff $\Lambda = \Lambda^*$, and **even** iff $x \odot x \in 2\mathbb{Z}$ for $\forall x \in \Lambda$.

CECC → Lattice

 $\bullet\,$ For a length- $2n$ code $\mathcal{C}\subset \mathbb{F}_{p}^{2n}.$ we associate the Construction A lattice $\Lambda(\mathcal{C})$ by

$$
\Lambda(\mathcal{C}) = \left\{ \left(\frac{\alpha + pk_1}{\sqrt{p}}, \frac{\beta + pk_2}{\sqrt{p}} \right) \middle| c = (\alpha, \beta) \in \mathcal{C}, k_1, k_2 \in \mathbb{Z}^n \right\}.
$$

CECC → Lattice

 $\bullet\,$ For a length- $2n$ code $\mathcal{C}\subset \mathbb{F}_{p}^{2n}.$ we associate the Construction A lattice $\Lambda(\mathcal{C})$ by

$$
\Lambda(\mathcal{C}) = \left\{ \left(\frac{\alpha + pk_1}{\sqrt{p}}, \frac{\beta + pk_2}{\sqrt{p}} \right) \middle| c = (\alpha, \beta) \in \mathcal{C}, k_1, k_2 \in \mathbb{Z}^n \right\}.
$$

• For odd prime *p*, the Construction A lattice Λ(C) is **even self-dual** with Lorentzian metric *η* if CECC C is **self-dual** w.r.t. *η*.

[Yahagi '22] [Kawabata-Nishioka-Okuda '23]

CECC → Lattice

 $\bullet\,$ For a length- $2n$ code $\mathcal{C}\subset \mathbb{F}_{p}^{2n}.$ we associate the Construction A lattice $\Lambda(\mathcal{C})$ by

$$
\Lambda(\mathcal{C}) = \left\{ \left(\frac{\alpha + pk_1}{\sqrt{p}}, \frac{\beta + pk_2}{\sqrt{p}} \right) \middle| c = (\alpha, \beta) \in \mathcal{C}, k_1, k_2 \in \mathbb{Z}^n \right\}.
$$

- For odd prime *p*, the Construction A lattice Λ(C) is **even self-dual** with Lorentzian metric *η* if CECC C is **self-dual** w.r.t. *η*. [Yahagi '22] [Kawabata-Nishioka-Okuda '23]
- \bullet For example, the $[2n, n]_p$ code $\mathcal C$ generated by $n \times 2n$ matrix $(I_n \mid B_n)$, where B_n is \mathbb{F}_n -valued antisymmetric matrix (**B-form code**).

 \Rightarrow $\Lambda(\mathcal{C})$ corresponds to the Narain lattice with $G = I_n$ and $B = B_n$.

1. [Introduction](#page-1-0)

2. [Classical error-correction codes and lattices](#page-5-0)

3. [Construction of Narain lattice \(Construction A\)](#page-15-0)

4. [Generalization of Construction A via cyclotomic field](#page-22-0)

Motivation

 \bullet The Constructin A is based on a "hypercubic lattice" \mathbb{Z}^n :

$$
\Lambda(\mathcal{C}) = \left\{ \left(\frac{\alpha + pk_1}{\sqrt{p}}, \frac{\beta + pk_2}{\sqrt{p}} \right) \middle| c = (\alpha, \beta) \in \mathcal{C}, k_1, k_2 \in \mathbb{Z}^n \right\}.
$$

But there is no reason to restrict to "square" lattice. \implies triangular, ADE, etc.

Motivation

 \bullet The Constructin A is based on a "hypercubic lattice" \mathbb{Z}^n :

$$
\Lambda(\mathcal{C}) = \left\{ \left(\frac{\alpha + pk_1}{\sqrt{p}}, \frac{\beta + pk_2}{\sqrt{p}} \right) \middle| c = (\alpha, \beta) \in \mathcal{C}, k_1, k_2 \in \mathbb{Z}^n \right\}.
$$

But there is no reason to restrict to "square" lattice. \implies triangular, ADE, etc.

- Such **Euclidean** lattices can be constructed from CECCs using "integers" of **cyclotomic field** $\mathbb{Q}(\zeta_p)$ instead of $\mathbb{Z}^n \subset \mathbb{R}^n$ [Conway-Sloane '87] [Ebeling '94] [Montague '93] [Dolan-Goddard-Montague '94]. . .
- We use these facts to construct **Lorentzian** lattices, and identify the corresponding Narain CFTs.

Example: $\mathbb{Q}(\zeta_3)$ and $\mathbb{Z}[\zeta_3]$

• **The third cyclotomic field** $\mathbb{Q}(\zeta_3)$ is a number field by adjoining ζ_3 to \mathbb{Q} ,

$$
\mathbb{Q}(\zeta_3) = \{a_0 + a_1 \zeta_3 \mid a_0, a_1 \in \mathbb{Q}\} \text{ where } \zeta_3 = \frac{-1 + \sqrt{-3}}{2}.
$$

This is a two-dimensional vector space over Q with basis 1 and *ζ*3.

Example: $\mathbb{Q}(\zeta_3)$ and $\mathbb{Z}[\zeta_3]$

• **The third cyclotomic field** $\mathbb{Q}(\zeta_3)$ is a number field by adjoining ζ_3 to \mathbb{Q} ,

$$
\mathbb{Q}(\zeta_3) = \{a_0 + a_1 \zeta_3 \mid a_0, a_1 \in \mathbb{Q}\} \text{ where } \zeta_3 = \frac{-1 + \sqrt{-3}}{2}.
$$

This is a two-dimensional vector space over Q with basis 1 and *ζ*3.

• The **integers** of Q(*ζ*3) are defined as

 $\mathbb{Z}[\zeta_3] = \{m_0 + m_1\zeta_3 \mid m_0, m_1 \in \mathbb{Z}\}.$

 $\mathbb{Z}[\zeta_3]$ forms an equilateral triangular lattice in $\mathbb{C} \simeq \mathbb{R}^2.$

Lattices over Z[*ζ*3]

• Consider the set of "multiple" of $1 - \zeta_3 \in \mathbb{Z}[\zeta_3]$ as

$$
\mathfrak{P} \coloneqq (1 - \zeta_3) \mathbb{Z}[\zeta_3] = \{ (1 - \zeta_3) \xi \mid \xi \in \mathbb{Z}[\zeta_3] \}.
$$

• Since Z[*ζ*3]*/*P ∼= F3, Z[*ζ*3] is partitioned as $\mathbb{Z}[\zeta_3] = \bigcup^2$ *i*=0 $[i + \mathfrak{P}]$ where $i \in \mathbb{F}_3$.

Lattices over Z[*ζ*3]

• Consider the set of "multiple" of $1 - \zeta_3 \in \mathbb{Z}[\zeta_3]$ as

$$
\mathfrak{P} \coloneqq (1 - \zeta_3) \mathbb{Z}[\zeta_3] = \{ (1 - \zeta_3) \xi \mid \xi \in \mathbb{Z}[\zeta_3] \}.
$$

• Since Z[*ζ*3]*/*P ∼= F3, Z[*ζ*3] is partitioned as $\mathbb{Z}[\zeta_3] = \bigcup^2 [i + \mathfrak{P}] \quad \text{where} \quad i \in \mathbb{F}_3.$ *i*=0

 \bullet Then, identify elements of $\mathbb{Z}[\zeta_3]$ with \mathbb{F}_3 -valued codewords $c\in \mathbb{F}_3^n$ under " $\mathrm{mod}\,\, \mathfrak{P}$ ".

 \implies we can construct $2n$ -dim. lattice from length- n ternary codes $\mathcal{C} \subset \mathbb{F}_3^n,$

$$
\Lambda_{\mathbb{C}}(\mathcal{C}) \coloneqq \{c + (1 - \zeta_3)\xi \mid c \in \mathcal{C}, \ \xi \in \mathbb{Z}[\zeta_3]^n\}.
$$

Narain Lattices via Z[*ζ*3]

• Similarly to the Construction A, we construct Narain lattice from CECC via $\mathbb{Z}[\zeta_3]$: [Mizoguchi-TO '24]

$$
\Lambda(\mathcal{C}) \coloneqq \{ \alpha + (1 - \zeta_3)k_1, \beta + (1 - \zeta_3)k_2 \mid (\alpha, \beta) \in \mathcal{C}, k_1, k_2 \in \mathbb{Z}[\zeta_3]^n \}.
$$

cf. Construction A: $\Lambda(\mathcal{C}) = \left\{ \left(\frac{\alpha + pk_1}{\sqrt{p}}, \frac{\beta + pk_2}{\sqrt{p}} \right) \Big| (\alpha, \beta) \in \mathcal{C}, k_1, k_2 \in \mathbb{Z}^n \right\}.$

 \implies As a result, $[2n,n]_p$ B-form codes give even self-dual lattice $\Lambda(\mathcal{C})\subset \mathbb{R}^{2n,2n}.$

Narain Lattices via Z[*ζ*3]

• Similarly to the Construction A, we construct Narain lattice from CECC via Z[*ζ*3]: [Mizoguchi-TO '24]

$$
\Lambda(\mathcal{C}) \coloneqq \{ \alpha + (1 - \zeta_3)k_1, \beta + (1 - \zeta_3)k_2 \mid (\alpha, \beta) \in \mathcal{C}, k_1, k_2 \in \mathbb{Z}[\zeta_3]^n \}.
$$

cf. Construction A:
$$
\Lambda(\mathcal{C}) = \left\{ \left(\frac{\alpha + pk_1}{\sqrt{p}}, \frac{\beta + pk_2}{\sqrt{p}} \right) \mid (\alpha, \beta) \in \mathcal{C}, k_1, k_2 \in \mathbb{Z}^n \right\}.
$$

 \implies As a result, $[2n,n]_p$ B-form codes give even self-dual lattice $\Lambda(\mathcal{C})\subset \mathbb{R}^{2n,2n}.$

• From the direct calculation, the corresponding Narain CFT is

 $G = I_n \otimes C_3^{-1}, \quad B = B_n \otimes C_3^{-1}, \quad C_3$: Gram matrix of A_2 root lattice.

Conclusions and Outlook

- $\bullet\,$ We construct Narain lattices $\Lambda(\mathcal{C})\subset \mathbb{R}^{n(p-1),n(p-1)}$ by identifying CECCs over \mathbb{F}_p with $\mathbb{Z}[\zeta_n]$ -valued vectors since $\mathbb{Z}[\zeta_n]/\mathfrak{P} \cong \mathbb{F}_n$.
- $\bullet\,$ From $\left[2n,n\right] _{p}$ B-form codes, we obtain the corresponding Narain CFTs

$$
G = I_n \otimes C_p^{-1}, \quad B = B_n \otimes C_p^{-1}, \quad C_p : \text{Gram matrix of } A_{p-1}.
$$

- Our approach is the generalization of Construction A and gives the systematical way to obtain broader class of Narain CFTs.
- Generalization to other number field (e.g. quadratic field, subfield of Q(*ζp*), etc.) and general CECCs over \mathbb{F}_{p^l} or \mathbb{Z}_n will be interesting.