Narain CFTs from Error-Correcting Codes via Integers of Cyclotomic Field

Takumi Oikawa

The Graduate University for Advanced Studies, SOKENDAI

Based on arXiv:2410.12488 with Shun'ya Mizoguchi

Introduction

• Error-correcting code is useful for the construction of CFTs.

Indeed, some 2d chiral CFTs can be constructed from a certain class of CECCs via Eucledean lattices. [Dolan-Goddard-Montague '90, '96]

Introduction

• Error-correcting code is useful for the construction of CFTs.

Indeed, some 2d chiral CFTs can be constructed from a certain class of CECCs via Eucledean lattices. [Dolan-Goddard-Montague '90, '96]

In recent years, this construction was generalized to the case of QECCs.

[Dymarsky-Shapere '20]

Overview (1/2)

- We focus on the Narain CFT, which is the theory of n free bosons $X^i(\tau, \sigma)$ compactified on an n-dimensional torus. [Narain '86] [Narain-Sarmadi-Witten '87]
- The momentum (\vec{p}_L, \vec{p}_R) forms the **Lorentzian even self-dual lattice** $\Lambda \subset \mathbb{R}^{n,n}$. \implies They can be constructed from CECCs, and then related to QECCs. [Dymarsky-Shapere '20] [Kawabata-Nishioka-Okuda '23]

Overview (2/2)

- However, the way to associate Euclidean lattices with CECCs is not unique. [Conway-Sloane '87] [Ebeling '94] ...
- Inspired by the earlier works, we construct the Lorentzian lattice from CECCs using integers of cyclotomic field.
 - \implies We obtain a broader class of corresponding Narain CFTs.

1. Introduction

2. Classical error-correction codes and lattices

3. Construction of Narain lattice (Construction A)

4. Generalization of Construction A via cyclotomic field

Classical error correction

- The important point of CECC is to add the **redundancy** into original messages.
- A simple example is to repeat each bit three times (repetition code).

Then, $\mathbb{F}_2 = \{0,1\}$ is embedded into \mathbb{F}_2^3 as $\mathcal{C} = \{000,111\} \subset \mathbb{F}_2^3$.

• In this case, Bob can correct one bit-flip error by majority vote.

Classical error-correcting code

• We consider length-*n* CECCs over $\mathbb{F}_p = \{0, 1, \cdots, p-1\}.$

Thus, we encode k-bit original messages $x \in \mathbb{F}_p^k$ into n-bit codewords $c \in \mathbb{F}_p^n$.

Classical error-correcting code

• We consider length-*n* CECCs over $\mathbb{F}_p = \{0, 1, \cdots, p-1\}.$

Thus, we encode k-bit original messages $x \in \mathbb{F}_p^k$ into n-bit codewords $c \in \mathbb{F}_p^n$.

Definition: $[n, k]_p$ code

A *p*-ary linear code $C \subset \mathbb{F}_p^n$ is defined as a set of codewords $c \in \mathbb{F}_p^n$ generated by the \mathbb{F}_p -valued $k \times n$ matrix G,

$$\mathcal{C} = \Big\{ c \in \mathbb{F}_p^n \ \Big| \ c = xG, \ x \in \mathbb{F}_p^k \Big\}.$$

Dual code

• For the construction of even self-dual lattices, we introduce dual codes.

Definition: Dual code

For an $[n,k]_{p}$ code $\mathcal C$, the $\textbf{dual}\ \textbf{code}$ of $\mathcal C$ is defined as

$$\mathcal{C}^{\perp} = \left\{ c' \in \mathbb{F}_p^n \mid c \cdot c' = 0 \mod p, \ c \in \mathcal{C} \right\}.$$

Here, the inner product is the standard Euclidean norm $c \cdot c' = \sum_{i=1}^{n} c_i c'_i$.

Dual code

• For the construction of even self-dual lattices, we introduce dual codes.

Definition: Dual code

For an $\left[n,k\right]_{p}$ code $\mathcal{C},$ the dual code of \mathcal{C} is defined as

$$\mathcal{C}^{\perp} = \left\{ c' \in \mathbb{F}_p^n \mid c \cdot c' = 0 \mod p, \ c \in \mathcal{C} \right\}.$$

Here, the inner product is the standard Euclidean norm $c \cdot c' = \sum_{i=1}^{n} c_i c'_i$.

• If C satisfies $C \subset C^{\perp}$, then C is called **self-orthogonal**.

Especially, C is called **self-dual** if and only if C satisfies $C = C^{\perp}$.

Construction A

• We construct the Euclidean lattice from CECCs via the **Construction A**.

[Leech-Sloane '71]

Definition: Construction A

For an $[n,k]_n$ code \mathcal{C} , we define the Construction A lattice $\Lambda(\mathcal{C})$ as

$$\Lambda(\mathcal{C}) \coloneqq \frac{1}{\sqrt{p}} \rho^{-1}(\mathcal{C}), \text{ where } \rho \colon \mathbb{Z}^n \to (\mathbb{Z}/p\mathbb{Z})^n = \mathbb{F}_p^n.$$

Construction A

• We construct the Euclidean lattice from CECCs via the **Construction A**.

[Leech-Sloane '71]

Definition: Construction A

For an $[n,k]_p$ code $\mathcal C,$ we define the Construction A lattice $\Lambda(\mathcal C)$ as

$$\Lambda(\mathcal{C}) \coloneqq \frac{1}{\sqrt{p}} \rho^{-1}(\mathcal{C}), \text{ where } \rho \colon \mathbb{Z}^n \to (\mathbb{Z}/p\mathbb{Z})^n = \mathbb{F}_p^n.$$

• The lattice vectors $\lambda \in \Lambda(\mathcal{C})$ are given by identifying with $c \in \mathcal{C}$ under mod p,

$$\lambda = \frac{c + pm}{\sqrt{p}}, \text{ for } c \in \mathcal{C}, \ m \in \mathbb{Z}^n.$$

Construction A (example)

• Consider $\mathcal{C} = \{00, 11\} \subset \mathbb{F}_2^2$ and then, construct the Construction A lattice $\Lambda(\mathcal{C})$.

The lattice vectors $\lambda \in \Lambda(\mathcal{C})$ are given by identifying with $c \in \mathcal{C}$ under mod 2:

$$\lambda = \frac{c+2m}{\sqrt{2}}, \quad \text{for } c \in \mathcal{C}, \ m \in \mathbb{Z}^2$$

Construction A (example)

• Consider $\mathcal{C} = \{00, 11\} \subset \mathbb{F}_2^2$ and then, construct the Construction A lattice $\Lambda(\mathcal{C})$.

The lattice vectors $\lambda \in \Lambda(\mathcal{C})$ are given by identifying with $c \in \mathcal{C}$ under mod 2:

$$\lambda = \frac{c+2m}{\sqrt{2}}, \quad \text{for } c \in \mathcal{C}, \ m \in \mathbb{Z}^2$$

- Then, $\Lambda(\mathcal{C})$ consists of two types of points:

$$(0,0) + \sqrt{2}m$$
 and $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) + \sqrt{2}m.$

Therefore,

$$\Lambda(\mathcal{C}) = \left[\sqrt{2}\mathbb{Z}^2\right] \bigcup \left[\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) + \sqrt{2}\mathbb{Z}^2\right].$$

1. Introduction

2. Classical error-correction codes and lattices

3. Construction of Narain lattice (Construction A)

4. Generalization of Construction A via cyclotomic field

Narain CFT

• We focus on the Narain CFT, which is the theory of n free bosons $X^i(\tau, \sigma)$ compactified on an n-dimensional torus $\mathbb{R}^n/(2\pi\Gamma)$; [Narain '86] [Narain-Sarmadi-Witten '87]

$$S = \frac{1}{8\pi} \int \mathrm{d}t \int_0^{2\pi} \mathrm{d}\sigma \Big[G_{ij} \Big(\partial_t X^i \, \partial_t X^j - \partial_\sigma X^i \, \partial_\sigma X^j \Big) - 2B_{ij} \, \partial_t X^i \, \partial_\sigma X^j \Big],$$

where G (and B) are $n \times n$ constant (anti-) symmetric matrix, respectively.

• The set of momentum (\vec{p}_L, \vec{p}_R) forms a lattice $\tilde{\Lambda} = \{(\vec{p}_L, \vec{p}_R) \mid \vec{m}, \vec{w} \in \mathbb{Z}^n\} \subset \mathbb{R}^{2n}$,

$$\vec{p}_{L_i} = \frac{m_i}{R} + \frac{R}{2}(B_{ij} + G_{ij})w^j, \quad \vec{p}_{R_i} = \frac{m_i}{R} + \frac{R}{2}(B_{ij} - G_{ij})w^j.$$

Lorentzian even self-dual lattice

• We introduce another convention of (\vec{p}_L, \vec{p}_R) as

$$\Lambda \coloneqq (\lambda_1, \lambda_2) = \left\{ \left(\frac{\vec{p}_L - \vec{p}_R}{\sqrt{2}}, \frac{\vec{p}_L + \vec{p}_R}{\sqrt{2}} \right) \mid \vec{m}, \vec{w} \in \mathbb{Z}^n \right\}.$$

Lorentzian even self-dual lattice

• We introduce another convention of (\vec{p}_L, \vec{p}_R) as

$$\Lambda \coloneqq (\lambda_1, \lambda_2) = \left\{ \left(\frac{\vec{p}_L - \vec{p}_R}{\sqrt{2}}, \frac{\vec{p}_L + \vec{p}_R}{\sqrt{2}} \right) \mid \vec{m}, \vec{w} \in \mathbb{Z}^n \right\}.$$

• This Narain lattice $\Lambda \subset \mathbb{R}^{n,n}$ forms the even self-dual lattice w.r.t. Lorentzian off-diagonal metric $\eta = \begin{pmatrix} 0 & I_n \\ I_n & 0 \end{pmatrix}$.

Definition: Even self-dual lattice

A dual lattice is defined as $\Lambda^* = \{x' \in \mathbb{R}^n \mid x \odot x' \in \mathbb{Z}, \forall x \in \mathbb{Z}\}$ w.r.t. η . Then a lattice Λ is self-dual iff $\Lambda = \Lambda^*$, and even iff $x \odot x \in 2\mathbb{Z}$ for $\forall x \in \Lambda$.

$CECC \rightarrow Lattice$

• For a length-2n code $\mathcal{C} \subset \mathbb{F}_p^{2n}$, we associate the Construction A lattice $\Lambda(\mathcal{C})$ by

$$\Lambda(\mathcal{C}) = \left\{ \left(\frac{\alpha + pk_1}{\sqrt{p}}, \frac{\beta + pk_2}{\sqrt{p}} \right) \mid c = (\alpha, \beta) \in \mathcal{C}, \ k_1, k_2 \in \mathbb{Z}^n \right\}.$$

$\textbf{CECC} \rightarrow \textbf{Lattice}$

• For a length- $2n \text{ code } \mathcal{C} \subset \mathbb{F}_p^{2n}$, we associate the Construction A lattice $\Lambda(\mathcal{C})$ by

$$\Lambda(\mathcal{C}) = \left\{ \left(\frac{\alpha + pk_1}{\sqrt{p}}, \frac{\beta + pk_2}{\sqrt{p}} \right) \mid c = (\alpha, \beta) \in \mathcal{C}, \ k_1, k_2 \in \mathbb{Z}^n \right\}.$$

 For odd prime *p*, the Construction A lattice Λ(C) is even self-dual with Lorentzian metric η if CECC C is self-dual w.r.t. η.

[Yahagi '22] [Kawabata-Nishioka-Okuda '23]

$\textbf{CECC} \rightarrow \textbf{Lattice}$

• For a length- $2n \operatorname{code} \mathcal{C} \subset \mathbb{F}_p^{2n}$, we associate the Construction A lattice $\Lambda(\mathcal{C})$ by

$$\Lambda(\mathcal{C}) = \left\{ \left(\frac{\alpha + pk_1}{\sqrt{p}}, \frac{\beta + pk_2}{\sqrt{p}} \right) \mid c = (\alpha, \beta) \in \mathcal{C}, \ k_1, k_2 \in \mathbb{Z}^n \right\}.$$

- For odd prime *p*, the Construction A lattice Λ(C) is even self-dual with Lorentzian metric η if CECC C is self-dual w.r.t. η.
 [Yahagi '22] [Kawabata-Nishioka-Okuda '23]
- For example, the $[2n, n]_p$ code C generated by $n \times 2n$ matrix $(I_n | B_n)$, where B_n is \mathbb{F}_p -valued antisymmetric matrix (**B-form code**).

 $\implies \Lambda(\mathcal{C})$ corresponds to the Narain lattice with $G = I_n$ and $B = B_n$.

1. Introduction

2. Classical error-correction codes and lattices

3. Construction of Narain lattice (Construction A)

4. Generalization of Construction A via cyclotomic field

Motivation

• The Constructin A is based on a "hypercubic lattice" \mathbb{Z}^n :

$$\Lambda(\mathcal{C}) = \left\{ \left(\frac{\alpha + pk_1}{\sqrt{p}}, \frac{\beta + pk_2}{\sqrt{p}} \right) \mid c = (\alpha, \beta) \in \mathcal{C}, \ k_1, k_2 \in \mathbb{Z}^n \right\}.$$

But there is no reason to restrict to "square" lattice. \implies triangular, ADE, etc.

Motivation

• The Constructin A is based on a "hypercubic lattice" \mathbb{Z}^n :

$$\Lambda(\mathcal{C}) = \left\{ \left(\frac{\alpha + pk_1}{\sqrt{p}}, \frac{\beta + pk_2}{\sqrt{p}} \right) \mid c = (\alpha, \beta) \in \mathcal{C}, \ k_1, k_2 \in \mathbb{Z}^n \right\}.$$

But there is no reason to restrict to "square" lattice. \implies triangular, ADE, etc.

- Such Euclidean lattices can be constructed from CECCs using "integers" of cyclotomic field Q(ζ_p) instead of Zⁿ ⊂ ℝⁿ [Conway-Sloane '87] [Ebeling '94] [Montague '93] [Dolan-Goddard-Montague '94]...
- We use these facts to construct Lorentzian lattices, and identify the corresponding Narain CFTs.

Example: $\mathbb{Q}(\zeta_3)$ and $\mathbb{Z}[\zeta_3]$

• The third cyclotomic field $\mathbb{Q}(\zeta_3)$ is a number field by adjoining ζ_3 to \mathbb{Q} ,

$$\mathbb{Q}(\zeta_3) = \{a_0 + a_1\zeta_3 \mid a_0, a_1 \in \mathbb{Q}\} \quad ext{where} \quad \zeta_3 = rac{-1 + \sqrt{-3}}{2}.$$

This is a two-dimensional vector space over \mathbb{Q} with basis 1 and ζ_3 .

Example: $\mathbb{Q}(\zeta_3)$ and $\mathbb{Z}[\zeta_3]$

• The third cyclotomic field $\mathbb{Q}(\zeta_3)$ is a number field by adjoining ζ_3 to \mathbb{Q} ,

$$\mathbb{Q}(\zeta_3) = \{a_0 + a_1\zeta_3 \mid a_0, a_1 \in \mathbb{Q}\} \text{ where } \zeta_3 = \frac{-1 + \sqrt{-3}}{2}.$$

This is a two-dimensional vector space over \mathbb{Q} with basis 1 and ζ_3 .

• The **integers** of $\mathbb{Q}(\zeta_3)$ are defined as

$$\mathbb{Z}[\zeta_3] = \{ m_0 + m_1 \zeta_3 \mid m_0, m_1 \in \mathbb{Z} \}.$$

 $\mathbb{Z}[\zeta_3]$ forms an equilateral triangular lattice in $\mathbb{C} \simeq \mathbb{R}^2$.

Lattices over $\mathbb{Z}[\zeta_3]$

• Consider the set of "multiple" of $1-\zeta_3\in\mathbb{Z}[\zeta_3]$ as

$$\mathfrak{P} \coloneqq (1-\zeta_3)\mathbb{Z}[\zeta_3] = \{(1-\zeta_3)\xi \mid \xi \in \mathbb{Z}[\zeta_3]\}.$$

• Since $\mathbb{Z}[\zeta_3]/\mathfrak{P} \cong \mathbb{F}_3$, $\mathbb{Z}[\zeta_3]$ is partitioned as $\mathbb{Z}[\zeta_3] = \bigcup_{i=0}^2 [i + \mathfrak{P}]$ where $i \in \mathbb{F}_3$.

Lattices over $\mathbb{Z}[\zeta_3]$

• Consider the set of "multiple" of $1-\zeta_3\in\mathbb{Z}[\zeta_3]$ as

$$\mathfrak{P} \coloneqq (1-\zeta_3)\mathbb{Z}[\zeta_3] = \{(1-\zeta_3)\xi \mid \xi \in \mathbb{Z}[\zeta_3]\}.$$

• Since $\mathbb{Z}[\zeta_3]/\mathfrak{P} \cong \mathbb{F}_3$, $\mathbb{Z}[\zeta_3]$ is partitioned as $\mathbb{Z}[\zeta_3] = \bigcup_{i=0}^2 [i + \mathfrak{P}]$ where $i \in \mathbb{F}_3$.

• Then, identify elements of $\mathbb{Z}[\zeta_3]$ with \mathbb{F}_3 -valued codewords $c \in \mathbb{F}_3^n$ under "mod \mathfrak{P} ".

 \implies we can construct 2n-dim. lattice from length-n ternary codes $\mathcal{C} \subset \mathbb{F}_3^n$,

$$\Lambda_{\mathbb{C}}(\mathcal{C}) \coloneqq \{ c + (1 - \zeta_3) \xi \mid c \in \mathcal{C}, \ \xi \in \mathbb{Z}[\zeta_3]^n \}.$$

Narain Lattices via $\mathbb{Z}[\zeta_3]$

• Similarly to the Construction A, we construct Narain lattice from CECC via $\mathbb{Z}[\zeta_3]$: [Mizoguchi-TO '24]

$$\Lambda(\mathcal{C}) \coloneqq \{ \alpha + (1-\zeta_3)k_1, \beta + (1-\zeta_3)k_2 \mid (\alpha,\beta) \in \mathcal{C}, \ k_1, k_2 \in \mathbb{Z}[\zeta_3]^n \}.$$

cf. Construction A: $\Lambda(\mathcal{C}) = \left\{ \left(\frac{\alpha + pk_1}{\sqrt{p}}, \frac{\beta + pk_2}{\sqrt{p}} \right) \mid (\alpha, \beta) \in \mathcal{C}, \ k_1, k_2 \in \mathbb{Z}^n \right\}.$

 \implies As a result, $[2n, n]_p$ B-form codes give even self-dual lattice $\Lambda(\mathcal{C}) \subset \mathbb{R}^{2n, 2n}$.

Narain Lattices via $\mathbb{Z}[\zeta_3]$

• Similarly to the Construction A, we construct Narain lattice from CECC via $\mathbb{Z}[\zeta_3]$: [Mizoguchi-TO '24]

$$\Lambda(\mathcal{C}) \coloneqq \{ \alpha + (1-\zeta_3)k_1, \beta + (1-\zeta_3)k_2 \mid (\alpha,\beta) \in \mathcal{C}, \ k_1, k_2 \in \mathbb{Z}[\zeta_3]^n \}.$$

cf. Construction A:
$$\Lambda(\mathcal{C}) = \left\{ \left(\frac{\alpha + pk_1}{\sqrt{p}}, \frac{\beta + pk_2}{\sqrt{p}} \right) \mid (\alpha, \beta) \in \mathcal{C}, \ k_1, k_2 \in \mathbb{Z}^n \right\}.$$

 \implies As a result, $[2n, n]_p$ B-form codes give even self-dual lattice $\Lambda(\mathcal{C}) \subset \mathbb{R}^{2n, 2n}$.

• From the direct calculation, the corresponding Narain CFT is

 $G = I_n \otimes C_3^{-1}$, $B = B_n \otimes C_3^{-1}$, C_3 : Gram matrix of A_2 root lattice.

Conclusions and Outlook

- We construct Narain lattices $\Lambda(\mathcal{C}) \subset \mathbb{R}^{n(p-1),n(p-1)}$ by identifying CECCs over \mathbb{F}_p with $\mathbb{Z}[\zeta_p]$ -valued vectors since $\mathbb{Z}[\zeta_p]/\mathfrak{P} \cong \mathbb{F}_p$.
- From $\left[2n,n\right]_p$ B-form codes, we obtain the corresponding Narain CFTs

$$G = I_n \otimes C_p^{-1}, \quad B = B_n \otimes C_p^{-1}, \quad C_p :$$
 Gram matrix of $A_{p-1}.$

- Our approach is the generalization of Construction A and gives the systematical way to obtain broader class of Narain CFTs.
- Generalization to other number field (e.g. quadratic field, subfield of Q(ζ_p), etc.) and general CECCs over F_{p^l} or Z_n will be interesting.