Entanglement Rényi entropy and boson-fermion duality in massless Thirring model

Harunobu Fujimura*

Collaborators : Tatsuma Nishioka* and Soichiro Shimamori*

*Osaka university, particle physics theory group

arXiv:2309.11889 published in Phys. Rev. D 108, 125016

We will see that **boson-fermion duality** can be used to analyze entanglement in an **interacting** field theory.

1. What is the entanglement?

Entanglement = Correlations in quantum theory that cannot be explained by classical theory.

The notion of entanglement is important not only in <u>quantum information theory</u> but also <u>high energy physics</u>.

1. How to quantify the entanglement?

Density matrix : $\rho_{AB} = |\psi_{AB}\rangle\langle\psi_{AB}|$ Reduced density matrix : $\rho_A = \text{Tr}_B[\rho_{AB}]$

$$\bigcirc \qquad \bigcirc \qquad \bigcirc \qquad B$$

Entanglement Rényi Entropy (ERE) : $S_n(A) \equiv \frac{1}{1-n} \log \operatorname{Tr}_A[\rho_A^n] \quad , n \in \mathbb{Z}_+$ $\left(\lim_{n \to 1} S_n(A) = -\operatorname{Tr}_A[\rho_A \log \rho_A] \right)$

Examples:

Bell state :
$$|\psi_{AB}\rangle = \frac{1}{\sqrt{2}}(|\uparrow\rangle_{A}|\uparrow\rangle_{B} + |\downarrow\rangle_{A}|\downarrow\rangle_{B}) \implies S_{2}(A) = -\log \operatorname{Tr}_{A}[\rho_{A}^{2}] = \log 2 > 0$$
 (we set $n = 2$ for simplicity)
Separable state (classical correlation): $|\psi_{AB}'\rangle = |\uparrow\rangle_{A}|\uparrow\rangle_{B} \implies S_{2}(A) = -\log \operatorname{Tr}_{A}[\rho_{A}^{2}] = 0$

ERE represent how much the two systems are quantumly entangled.

1. Quantum entanglement for QFT

In the case of QFT, there are degree of freedom on each special points.

system $A \rightarrow \text{region } V$ system $B \rightarrow \text{region } \overline{V} = \text{complemental region of } V$

Replica method

The ERE reduces to the partition function on the replicated manifold.

1. Quantum entanglement for QFT

Replica method works well for free theory.

However, the calculation of entanglement is very difficult for interacting theory \cdots

There are almost no examples of rigorous analytical calculations of the effects of interactions to entanglement in QFT.

1. Boson-fermion duality

Our aim : To exactly see how interactions contribute to entanglement in QFT.

1. Boson-fermion duality

Our aim : To exactly see how interactions contribute to entanglement in QFT.

There is the correspondence between partition functions

1. Short summary of our work

What we did :

- Combining the replica method and boson/fermion duality, we perform rigorous analytical calculations of the entanglement Rényi entropy (ERE) in interacting models.
- Model is massless Thirring model (1+1d, fermion with 4-points interaction)
- $V = V_1 \cup V_2$ (two intervals) \rightarrow we can see the effect of interaction
- Exact results reveal the non-perturbative behavior of the ERE.

1. Introduction

2. Analysis of entanglement in massless Thirring model

3. Results

4. Summary and future direction

1. Introduction

2. Analysis of entanglement in massless Thirring model

3. Results

4. Summary and future direction

2. Analysis of entanglement in massless Thirring model

How to calculate the partition function on $\Sigma_{2,2}$?

- Conformal map Boson-fermion duality

2. Analysis of entanglement in massless Thirring model

 $\Sigma_{2,2}$ can be mapped to **T** by the conformal map. [Lunin, Mathur 2001]

2. Boson-fermion duality

The way to calculate partition function on torus $Z_{\mathbf{T}}^{F}$ is boson-fermion duality

1. Introduction

2. Analysis of entanglement in massless Thirring model

3. Results

4. Summary and future direction

[H.F, T. Nishioka, S. Shimamori, 2023]

Analytical result

$$S_2(V,\lambda) = S_2(V,0) - \frac{1}{2} \log \left[\frac{1}{2\vartheta_3^4(\tau)} \sum_{j=2}^4 \vartheta_j^2 \left(\tau(1+\lambda) \right) \vartheta_j^2 \left(\frac{\tau}{1+\lambda} \right) \right]$$

$$x = \left(\frac{\vartheta_2(\tau)}{\vartheta_3(\tau)}\right)^4$$

x : cross-ratio of region V $\tau : moduli of torus$ $\lambda : coupling const$ $\vartheta_j(\tau), j = 2,3,4$: Jacobi theta functions

Consistent with existing result (free fermion)

For $\lambda = 0$, this term vanishes from Jacobi id $\vartheta_3^4(\tau) - \vartheta_2^4(\tau) - \vartheta_4^4(\tau) = 0$

We derived the Rényi Entropy for an interacting QFT exactly.

Let see the interaction dependence : $\Delta S_2(\lambda) = S_2(V, \lambda) - S_2(V, 0)$

Let see the interaction dependence : $\Delta S_2(\lambda) = S_2(V, \lambda) - S_2(V, 0)$

Let see the interaction dependence : $\Delta S_2(\lambda) = S_2(V, \lambda) - S_2(V, 0)$

We explore the interaction dependence of the ERE, including the non-perturbative region.

Mutual Rényi information : $I_n(V_1, V_2) = S_n(V_1) + S_n(V_2) - S_n(V_1 \cup V_2)$ (MRI)

• $x \sim 0$, $x \sim 1$: reasonable behavior

Mutual Rényi information : $I_n(V_1, V_2) = S_n(V_1) + S_n(V_2) - S_n(V_1 \cup V_2)$ (MRI)

- $x \sim 0$, $x \sim 1$: reasonable behavior
- MRI increase as the coupling const increase.

1. Introduction

2. Analysis of entanglement in massless Thirring model

3. Results

4. Summary and future direction

Summary

- Entanglement is important notion not only in quantum information theory but also high energy physics.
- However, calculating the effect of interaction in QFT is difficult task.
- We combined the replica method and **boson-fermion duality**.
- We exactly derived the ERE and MRI in an interacting system and investigated the entanglement including the non-perturbative regime.

Comment on subsequent research ERE on XXZ spin chain (↔ massless Thirring model) [Marić, Bocini, Fagotti, 2023.12] Their results were consistent with ours.

4. Summary and future direction

Future direction

- Increasing the number of intervals or $S_{n>2} \rightarrow$ multi partite information
- Massive Thirring model
- Other quantum information measure → Ongoing work

Massive Thirring model : $\mathcal{L}_F = i \, \bar{\psi} \, \gamma^{\mu} \partial_{\mu} \psi + \frac{\pi}{2} \lambda \, (\bar{\psi} \, \gamma^{\mu} \psi) (\bar{\psi} \, \gamma_{\mu} \psi) + m \, \overline{\psi} \psi$

Appendix

Appendix: fermionization dictionary

$$\mathcal{T}_F = \frac{\mathcal{T}_B \times (\mathrm{TQFT})}{\mathbb{Z}_2^B}$$

\mathcal{T}_F : fermionic theory \mathcal{T}_B : bosonic theory

Appendix: fermionization dictionary

For torus, g = 1, $\rho = PP$

付録:ホログラフィー原理との関係

Euclidean経路積分を考える。

 $t_{\rm E} = +0$

 $t_{\rm E} = -0$

$$\rho_V(\psi_1,\psi_2) = \operatorname{Tr}_{\overline{V}}[\langle \psi_1 | 0 \rangle \langle 0 | \psi_2 \rangle] = \underbrace{\psi_{2,V}}_{-\psi_{1,V}} \underbrace{\psi_{2,V}}_{-\psi_{1,V}}$$

付録:レプリカ法の詳細

標的:
$$S_2(V) = -\log \operatorname{Tr}_V[\rho_V^2]$$

$$\rho_V(\psi_1,\psi_2) = \operatorname{Tr}_{\overline{V}}[\langle \psi_1 | 0 \rangle \langle 0 | \psi_2 \rangle]$$

$$\operatorname{Tr}_{V}[\rho_{V}^{2}] = \sum_{\psi_{1},\psi_{2}} \rho_{V}(\psi_{1},\psi_{2}) \rho_{V}(\psi_{2},-\psi_{1}) \sim Z_{\Sigma_{2,2}}^{F}$$

レプリカ多様体

付録: Rényiエントロピー(ERE)のインターバル依存性

$$\Delta S_2(x) = S_2(V, \lambda) - S_2(V, 0)$$

既存の結果とconsistentな振る舞い

付録:相互Rényi情報量(MRI)の結合定数依存性

$$\mathsf{MRI}: I_n(V_1, V_2) = S_n(V_1) + S_n(V_2) - S_n(V_1 \cup V_2)$$

$TRI : I_n(A, B, C) = S_n(A \cup B \cup C) - S_n(A \cup B) - S_n(B \cup C) - S_n(C \cup A)$ $+S_n(A) + S_n(B) + S_n(C)$

$$\Delta S_2(\lambda) = S_2(V,\lambda) - S_2(V,0)$$

付録: cross-ratio x と トーラスのmoduli τ の関係

