Anyon condensation in mixed-state topological order

Ken KIKUCHI 謙 菊池

National Taiwan University

Based on 2406.14320 w/ KH Kam and FH Huang

Pure-state Topological Order

[Witten '89][Wen '89]

(Pure-state) topological order (TO) has peculiar properties:

- topology-dependent ground state degeneracies,
- robust under local deformations,
- fractional statistics, etc.

Pure-state Topological Order

[Witten '89][Wen '89]

(Pure-state) topological order (TO) has peculiar properties:

- topology-dependent ground state degeneracies,
- robust under local deformations,
- fractional statistics, etc.

[Kitaev '97]

⇒Fault-tolerant computation

Problem in pure-state TO computer

- Real computers interact with environments.
- The interaction reduces pure-states to mixed-states.

Problem in pure-state TO computer

- Real computers interact with environments.
- The interaction reduces pure-states to mixed-states.

\Rightarrow need mixed-state TO

Just like pure-state TOs are **classified** by modular fusion categories (MFCs),

$\{\text{Pure-state TOs}\} \cong \{\text{MFCs}\},\$

Just like pure-state TOs are **classified** by modular fusion categories (MFCs),

$\{\text{Pure-state TOs}\} \cong \{\text{MFCs}\},\$

mixed-state TOs are conjectured to be **classified** by **pre**modular fusion categories (Pre-MFCs),

 $\{\text{Mixed-state TOs}\} \cong \{\text{Pre-MFCs}\}.$

[Sohal-Prem '24][Ellison-Cheng '24] $\{Mixed-state TOs\} \cong \{Pre-MFCs\}$

[Ellison-Cheng '24] also conjectured **topological invariants** of mixed-state TOs by condensing all transparent bosonic anyons.

- Which anyons are condensable?
- How to condense general anyons?
- What are **topological invariants**?
- When condensation gives **pure-state TOs**?

- Which anyons are condensable?
- How to condense general anyons?
- What are **topological invariants**?
- When condensation gives **pure-state TOs**?

We answered all

<u>Theorem 1</u>.

[2406.14320 (KK-Kam-Huang)]

Condensable anyon =connected étale algebra

if all transparent anyons are bosons and all of them $\in A$.

[2406.14320 (KK-Kam-Huang)]

Clarified how to condense general anyons including

- non-invertible anyons,
- successive condensation.

Content

1. Preliminary

2. Results

3. Examples

Content

1. Preliminary

2. Results

3. Examples

fusion category =analogue of representation

2-dim. irrep. of SU(2) obeys

$2 \otimes 2 = 4 = 1 \oplus 3.$

 $(c_i \otimes c_i^* = 1 \oplus \dots)$

Analogously, fusion category C has

- simple objects $c_i \in C$,
- dual objects c_i^* of $c_i \in C$
- fusion product \otimes ,
- direct sum \oplus .

Example: Ising fusion category (FC)

Ising FC= $\{1,\eta,N\}$ i.e., rank=3

It has fusion product

 $\eta \otimes \eta = 1, \quad \eta \otimes N = N = N \otimes \eta, \quad N \otimes N = 1 \oplus \eta.$

<u>Example</u>: Ising FC The product $\eta \otimes \eta = 1$, $\eta \otimes N = N = N \otimes \eta$, $N \otimes N = 1 \oplus \eta$ is described by fusion matrices (in the basis $\{1,\eta,N\}$)

Definition. $i \otimes j = \bigoplus_{k \in C} (N_i)_j^k k$

$$N_1 = \begin{pmatrix} 1 & & \\ & 1 & \\ & & 1 \end{pmatrix}, \quad N_\eta = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad N_N = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}.$$

Spherical fusion category =fusion category w/ the quantum dimension d_i of c_i .

Spherical fusion category :=fusion category w/ **the** quantum dimension d_i of c_i .

Quantum dimensions obey the same multiplication rule

$$\operatorname{rank}_{i}(C) \\ d_{i}d_{j} = \sum_{k=1}^{k} N_{ij}^{k}d_{k}.$$

Example: Ising FC

From fusions $\eta \otimes \eta = 1$, $\eta \otimes N = N = N \otimes \eta$, $N \otimes N = 1 \oplus \eta$, we get

$$d_1 = 1, \quad d_\eta = 1, \quad d_N = \pm \sqrt{2}.$$

• Fusion category C may have braiding $c_{c_1,c_2}: c_1 \otimes c_2 \to c_2 \otimes c_1$. $(c_1,c_2 \in C)$

Braided fusion category (BFC):=fusion category w/ braiding c.
 (w/ consistency conditions)

Pre-modular fusion category (Pre-MFC):=spherical BFC.

• The braiding is characterized by **conformal dimension** h_i of c_i :

$$\widetilde{S}_{ij} := \operatorname{tr}(c_{c_j,c_i}c_{c_i,c_j}) = \sum_{k=1}^{\operatorname{rank}(C)} N_{ij}^{k} \frac{e^{2\pi i h_k}}{e^{2\pi i (h_i+h_j)}} d_k.$$

• Modular fusion category (MFC):=pre-MFC w/ det(\tilde{S}) $\neq 0$.

Example: Ising FC

The FC has (in basis $\{1,\eta,N\}$)

$$\widetilde{S} = \begin{pmatrix} 1 & 1 & \sqrt{2} \\ 1 & 1 & -\sqrt{2} \\ \sqrt{2} & -\sqrt{2} & 0 \end{pmatrix}$$

The full Ising FC is an MFC, but fusion subcategory $\{1,\eta\}$ is **not** modular.

• **Transparent** object:= $c_i \in \text{pre-MFC}$ s.t. $\forall c_j, c_{c_j,c_i} c_{c_i,c_j} = id_{c_i \otimes c_j}$.

• **Boson**:=simple object \in BFC w/ $e^{2\pi ih} = 1$.

• **Transparent** object:= $c_i \in \text{pre-MFC}$ s.t. $\forall c_j, c_{c_j,c_i} c_{c_i,c_j} = id_{c_i \otimes c_j}$.

<u>Example</u>: $1 \in \text{Ising FC}, \{1,\eta\} \text{ in } \{1,\eta\}.$

• **Boson**:=simple object \in BFC w/ $e^{2\pi ih} = 1$.

<u>Example</u>: $1 \in \text{Ising FC}, 1 \in \{1,\eta\}$.

Content

1. Preliminary

2. Results

3. Examples

<u>Theorem 1</u>.

[2406.14320 (KK-Kam-Huang)]

Condensable anyon =connected étale algebra

cf)[Kong '13]

if all transparent anyons are bosons and all of them $\in A$.

Theorem 2.

[2406.14320 (KK-Kam-Huang)]

Proof.

Use mathematical

Theorem. [Bruguières '00][Mueger '98, '12]

A connected étale algebra $A \in P$ gives a surjective

functor $F: P \rightarrow M$ if all transparent objects have

 $e^{2\pi i h} = 1$ and A condenses all transparent simple objects. \Box

How to condense general anyons

[2406.14320 (KK-Kam-Huang)]

- 1. Turn part of simple objects in A to the new vacuum $\underline{0}$,
- 2. Check consistencies.

How to condense general anyons

[2406.14320 (KK-Kam-Huang)]

- 1. Turn part of simple objects in A to the new vacuum 0,
- 2. Check consistencies.
 - Preservation of quantum dim.,
 Consistency w/ original fusion,
 Associativity,
 Duality, etc

Example. $\text{Rep}(S_3) = \{1, X, Y\}$

[2406.14320 (KK-Kam-Huang)]

Quantum dimensions: $(d_1, d_X, d_Y) = (1, 1, 2)$

Conformal dimensions: $(h_1, h_X, h_Y) = (0,0,0)$, all bosons

Example. $\operatorname{Rep}(S_3)$

[2406.14320 (KK-Kam-Huang)]

$$(d_1, d_X, d_Y, h_1, h_X, h_Y) = (1, 1, 2, 0, 0, 0)$$

 $\operatorname{Rep}(S_3)$ has 4 connected étale algebras

[KK '23]

 $A = 1, 1 \oplus X, 1 \oplus Y, 1 \oplus X \oplus 2Y.$

Example 1. $1 \oplus Y \in \operatorname{Rep}(S_3)$

[2406.14320 (KK-Kam-Huang)]

\otimes	1	X	Y
1	1	X	Y
X		1	Y
Y			$1 \oplus X \oplus Y$

 $(d_1, d_X, d_Y, h_1, h_X, h_Y) = (1, 1, 2, 0, 0, 0)$

1. Turn into vacuum $\underline{0}$

 $\begin{array}{l} 1\to \underline{0},\\ Y\to \underline{0}\oplus Y_1,\\ \text{w/}\ d_{Y_1}=1 \text{ to preserve quantum dimension.} \end{array}$

Example 1. $1 \oplus Y \in \operatorname{Rep}(S_3)$

[2406.14320 (KK-Kam-Huang)]

 $(d_1, d_X, d_Y, h_1, h_X, h_Y) = (1, 1, 2, 0, 0, 0)$

2. Consistency

 $X \otimes Y = Y$ reduces to

$$X \oplus (X \otimes_A Y_1) = \underline{0} \oplus Y_1.$$

Since X is not condensed, $X \neq \underline{0} \Rightarrow X = Y_1, Y_1 \otimes_A Y_1 = \underline{0}$.

Example 1. $1 \oplus Y \in \operatorname{Rep}(S_3)$

[2406.14320 (KK-Kam-Huang)]

\otimes	1	X	Y
1	1	X	Y
X		1	Y
Y			$1 \oplus X \oplus Y$

 $(d_1, d_X, d_Y, h_1, h_X, h_Y) = (1, 1, 2, 0, 0, 0)$

2. Consistency

With $Y \to \underline{0} \oplus X$, $Y \otimes Y = 1 \oplus X \oplus Y$ reduces to

 $(\underline{0} \oplus X) \oplus_A (\underline{0} \oplus X) = 2\underline{0} \oplus 2X,$

consistent.

Example 1. $1 \oplus Y \in \operatorname{Rep}(S_3)$

[2406.14320 (KK-Kam-Huang)]

Condensation of $1 \oplus Y \in \text{Rep}(S_3)$ turned

Example 2. $1 \oplus X \oplus 2Y \in \operatorname{Rep}(S_3)$

[2406.14320 (KK-Kam-Huang)]

\otimes	1	X	Y
1	1	X	Y
X		1	Y
Y			$1 \oplus X \oplus Y$

 $(d_1, d_X, d_Y, h_1, h_X, h_Y) = (1, 1, 2, 0, 0, 0)$

1. Turn into vacuum $\underline{0}$

 $\begin{array}{l} 1\to \underline{0},\\ X\to \underline{0},\\ Y\to \underline{0}\oplus Y_1,\\ \text{w/}\ d_{Y_1}=1 \ \text{to preserve quantum dimension}. \end{array}$

Example 2. $1 \oplus X \oplus 2Y \in \operatorname{Rep}(S_3)$

[2406.14320 (KK-Kam-Huang)]

\otimes	1	X	Y
1	1	X	Y
X		1	Y
Y			$1 \oplus X \oplus Y$

 $(d_1, d_X, d_Y, h_1, h_X, h_Y) = (1, 1, 2, 0, 0, 0)$

2. Consistency

 $Y \otimes Y = 1 \oplus X \oplus Y$ reduces to

$$Y_1 \oplus (Y_1 \otimes_A Y_1) = 2\underline{0}.$$

We need $Y_1 = \underline{0}$.

Example 2. $1 \oplus X \oplus 2Y \in \operatorname{Rep}(S_3)$

[2406.14320 (KK-Kam-Huang)]

Condensation of $1 \oplus X \oplus 2Y \in \text{Rep}(S_3)$ turned

(This can also be obtained from the last example by $X \rightarrow \underline{0}$.)

Content

1. Preliminary

2. Results

3. Examples

[2406.14320 (KK-Kam-Huang)]

Pre-MFC \mathcal{B}	Condensable anyon A	New phase \mathcal{B}^0_A	Topolog	gical invariant \mathcal{A}^{\min}	
$\operatorname{Vec}^1_{\mathbb{Z}_Z} \boxtimes \operatorname{Fib}$	$1 \oplus X$	Fib		Fib	
$\operatorname{Rep}(D_7)$	$1 \oplus X \oplus 2Y \oplus 2Z \oplus 2W$	$\operatorname{Vec}_{\mathbb{C}}$		$\operatorname{Vec}_{\mathbb{C}}$	
$\operatorname{Rep}(S_4)$	$1 \oplus X$	$\mathcal{C}(\mathrm{FR}^{4,2})$		$\operatorname{Vec}_{\mathbb{C}}$	
	$1\oplus Y$	$\mathrm{TY}(\mathbb{Z}_2 \times \mathbb{Z}_2)$			
	$1\oplus X\oplus 2Y$	$\operatorname{Vec}_{\mathbb{Z}_2 \times \mathbb{Z}_2}$ or $\operatorname{Vec}_{\mathbb{Z}_4}$			
	$1 \oplus X \oplus 2Y \oplus 3Z \oplus 3W$	$\operatorname{Vec}_{\mathbb{C}}$			
			$\operatorname{Vec}_{\mathbb{Z}_2}^{-1} \boxtimes \operatorname{Vec}_{\mathbb{Z}_2}^{-1}$	$(h_W = \frac{1}{4}, \frac{3}{4}),$	
$\mathrm{TY}(\mathbb{Z}_2 \times \mathbb{Z}_2)$	$1 \oplus X$	$\operatorname{Vec}_{\mathbb{Z}_2 \times \mathbb{Z}_2}$ or $\operatorname{Vec}_{\mathbb{Z}_4}$	ToricCode	$(h_W = 0, \frac{1}{2}),$	$\pmod{1}$
			$\operatorname{Vec}_{\mathbb{Z}_4}^{lpha}$	$(h_W = \frac{1}{8}, \frac{3}{8}, \frac{5}{8}, \frac{7}{8}).$	

Example. $TY(\mathbb{Z}_2 \times \mathbb{Z}_2) = \{1, X, Y, Z, W\}$

[2406.14320 (KK-Kam-Huang)]

\otimes	1	X	Y	Z	W
1	1	X	Y	Z	W
X		1	Z	Y	W
Y			1	X	W
Z				1	W
W					$1 \oplus X \oplus Y \oplus Z$

$$d_1 = d_X = d_Y = d_Z = 1, \quad d_W = 2$$

$$(h_1, h_X, h_Y, h_Z, h_W) = (0, 0, \frac{1}{2}, \frac{1}{2}, \frac{n}{8}) \text{ W/ } n = 0, 1, \dots, 7$$

Example. $TY(\mathbb{Z}_2 \times \mathbb{Z}_2) = \{1, X, Y, Z, W\}$ [2]

[2406.14320 (KK-Kam-Huang)]

The pre-MFC has $A = 1 \oplus X$.

Example. $TY(\mathbb{Z}_2 \times \mathbb{Z}_2) = \{1, X, Y, Z, W\}$

[2406.14320 (KK-Kam-Huang)]

\otimes	1	X	Y	Z	W
1	1	X	Y	Z	W
X		1	Z	Y	W
Y			1	X	W
Z				1	W
W					$1 \oplus X \oplus Y \oplus Z$

1. Turn into vacuum $\underline{0}$

$$1 \to \underline{0},$$
$$X \to \underline{0}.$$

Example. $TY(\mathbb{Z}_2 \times \mathbb{Z}_2) = \{1, X, Y, Z, W\}$

[2406.14320 (KK-Kam-Huang)]

\otimes	1	X	Y	Z	W
1	1	X	Y	Z	W
X		1	Z	Y	W
Y			1	X	W
Z				1	W
W					$1 \oplus X \oplus Y \oplus Z$

2. Consistency

 $X \otimes Y = Z$ reduces to

$$\underline{0} \otimes_A Y = Z,$$

or Y = Z.

Example. $TY(\mathbb{Z}_2 \times \mathbb{Z}_2) = \{1, X, Y, Z, W\}$

[2406.14320 (KK-Kam-Huang)]

2. Consistency

 $W \otimes W = 1 \oplus X \oplus Y \oplus Z$ reduces to

 $W \otimes_A W = 20 \oplus 2Y.$

We find W must **split**. Why?

Example. $TY(\mathbb{Z}_2 \times \mathbb{Z}_2) = \{1, X, Y, Z, W\}$

[2406.14320 (KK-Kam-Huang)]

$$W \otimes_A W = 2\underline{0} \oplus 2Y$$

Claim. W splits.

Proof.

Assume the opposite. Since *W* is self-dual,

the RHS contains only one vacuum $\underline{0}$, contradiction. \Box

$$\Rightarrow W \rightarrow W_1 \oplus W_2 \le d_{W_1} = 1 = d_{W_2}.$$
 (Recall $d_W = 2.$)

Example. $TY(\mathbb{Z}_2 \times \mathbb{Z}_2) = \{1, X, Y, Z, W\}$

[2406.14320 (KK-Kam-Huang)]

\otimes	1	X	Y	Z	W
1	1	X	Y	Z	W
X		1	Z	Y	W
Y			1	X	W
Z				1	W
W					$1 \oplus X \oplus Y \oplus Z$

2. Consistency

The fusion is now

 $(W_1 \oplus W_2) \otimes_A (W_1 \oplus W_2) = 2\underline{0} \oplus 2Y.$

There are 2 possibilities.

Example. $\operatorname{TY}(\mathbb{Z}_2 \times \mathbb{Z}_2) = \{1, X, Y, Z, W\}$ [2406.14320 (KK-Kam-Huang)] $(W_1 \oplus W_2) \otimes_A (W_1 \oplus W_2) = 2\underline{0} \oplus 2Y$ Since $W_1^* \oplus W_2^* = W_1 \oplus W_2$, 1) $W_{1,2}$ are self-dual, or 2) $W_1^* = W_2$. 1) $W_1 \otimes_A W_1 = \underline{0} = W_2 \otimes_A W_2 \Rightarrow W_1 \otimes_A W_2 = Y = W_2 \otimes_A W_1$.

2) $W_1 \otimes_A W_2 = \underline{0} = W_2 \otimes_A W_1 \implies W_1 \otimes_A W_1 = Y = W_2 \otimes_A W_2.$

Example. $TY(\mathbb{Z}_2 \times \mathbb{Z}_2) = \{1, X, Y, Z, W\}$

[2406.14320 (KK-Kam-Huang)]

\otimes	1	X	Y	Z	W
1	1	X	Y	Z	W
X		1	Z	Y	W
Y			1	X	W
Z				1	W
W					$1 \oplus X \oplus Y \oplus Z$

2. Consistency

 $Y \otimes W = W$ reduces to

 $Y \otimes_A (W_1 \oplus W_2) = W_1 \oplus W_2.$ We find $Y \otimes_A W_1 = W_2$, $Y \otimes_A W_2 = W_1$. Why?

Example. $TY(\mathbb{Z}_2 \times \mathbb{Z}_2) = \{1, X, Y, Z, W\}$ [2406.14320 (KK-Kam-Huang)]

 $Y \otimes (W_1 \oplus W_2) = W_1 \oplus W_2$

<u>Claim</u>. $Y \otimes_A W_1 = W_2$, $Y \otimes_A W_2 = W_1$.

Proof.

Consider when $W_{1,2}$ are self-dual, i.e., $W_1 \otimes_A W_1 = \underline{0}$.

Assume the opposite $Y \otimes_A W_1 = W_1$,

and fuse W_1 from the right to get $Y = \underline{0}$, a contradiction. Similarly for $W_1^* = W_2$ case. \Box

Example. $TY(\mathbb{Z}_2 \times \mathbb{Z}_2) = \{1, X, Y, Z, W\}$ [2406.14320 (KK-Kam-Huang)]

Condensation of $1 \oplus X \in TY(\mathbb{Z}_2 \times \mathbb{Z}_2)$ turned

(The difference originated from duality.)

Summary

- Pure-state TO \Rightarrow fault-tolerant computation.
- Real computer interacts w/ environment ⇒ Mixed-state TO.
- {Mixed-state TOs} \cong {Pre-MFC}. [Sohal-Prem '24][Ellison-Cheng '24]
- Topological inv. are obtained by condensation.
- Studied anyon condensation in mixed-state TOs. [2406.14320 (KK-Kam-Huang)]

Summary

[2406.14320 (KK-Kam-Huang)]

- Condensable anyon = connected étale algebra.
- Clarified how to condense general anyons.
- Clarified when Mixed-state TO \Rightarrow Pure-state TO.

• Computed topological invariants:

Pre-MFC \mathcal{B}	Condensable anyon A	New phase \mathcal{B}^0_A	Topolog	gical invariant \mathcal{A}^{\min}	
$\operatorname{Vec}^1_{\mathbb{Z}_Z} \boxtimes \operatorname{Fib}$	$1 \oplus X$	Fib		Fib	
$\operatorname{Rep}(D_7)$	$1 \oplus X \oplus 2Y \oplus 2Z \oplus 2W$	$\operatorname{Vec}_{\mathbb{C}}$		$\operatorname{Vec}_{\mathbb{C}}$	
$\operatorname{Rep}(S_4)$	$1 \oplus X$	$\mathcal{C}(\mathrm{FR}^{4,2})$		$\operatorname{Vec}_{\mathbb{C}}$	
	$1\oplus Y$	$\mathrm{TY}(\mathbb{Z}_2 \times \mathbb{Z}_2)$			
	$1\oplus X\oplus 2Y$	$\operatorname{Vec}_{\mathbb{Z}_2 \times \mathbb{Z}_2}$ or $\operatorname{Vec}_{\mathbb{Z}_4}$			
	$1 \oplus X \oplus 2Y \oplus 3Z \oplus 3W$	$\operatorname{Vec}_{\mathbb{C}}$			
			$\operatorname{Vec}_{\mathbb{Z}_2}^{-1} \boxtimes \operatorname{Vec}_{\mathbb{Z}_2}^{-1}$	$(h_W = \frac{1}{4}, \frac{3}{4}),$	
$TY(\mathbb{Z}_2 \times \mathbb{Z}_2)$	$1 \oplus X$	$\operatorname{Vec}_{\mathbb{Z}_2 \times \mathbb{Z}_2}$ or $\operatorname{Vec}_{\mathbb{Z}_4}$	ToricCode	$(h_W = 0, \frac{1}{2}),$	$\pmod{1}$
			$\operatorname{Vec}_{\mathbb{Z}_4}^{lpha}$	$(h_W = \frac{1}{8}, \frac{3}{8}, \frac{5}{8}, \frac{7}{8}).$	

Appendix

[2406.14320 (KK-Kam-Huang)]

Imagine a superconducting material.

[2406.14320 (KK-Kam-Huang)]

Imagine a superconducting material.

⇒Cooper pairs are **bosons**

[2406.14320 (KK-Kam-Huang)]

Imagine a mixed-state TO B_1 , and condense $A \in B_1$.

[2406.14320 (KK-Kam-Huang)]

Imagine a mixed-state TO B_1 , and condense $A \in B_1$.

 $\Rightarrow A \in B_1$ is an algebra object w/ unit morphism $u : 1 \rightarrow A$

[2406.14320 (KK-Kam-Huang)]

Imagine a mixed-state TO B_1 , and condense $A \in B_1$.

[2406.14320 (KK-Kam-Huang)]

Imagine a mixed-state TO B_1 , and condense $A \in B_1$.

 $\Rightarrow A \otimes_{B_2} A \cong A$ giving multiplication morphism $\mu : A \otimes_{B_1} A \rightarrow A$

[2406.14320 (KK-Kam-Huang)]

Imagine a mixed-state TO B_1 , and condense $A \in B_1$.

[2406.14320 (KK-Kam-Huang)]

Imagine a mixed-state TO B_1 , and condense $A \in B_1$.

 $\Rightarrow A \otimes_{B_1} A \cong A \oplus X$, or A is separable

[2406.14320 (KK-Kam-Huang)]

Imagine a mixed-state TO B_1 , and condense $A \in B_1$.

[2406.14320 (KK-Kam-Huang)]

Imagine a mixed-state TO B_1 , and condense $A \in B_1$.

 $\Rightarrow c_{A,A}^{B_1} \cong id_{A \otimes_{B_1} A}$, or A is commutative

connected étale algebra :=commutative separable alg. w/ unique vacuum

<u>Theorem 1</u>.

[2406.14320 (KK-Kam-Huang)]

Condensable anyon =connected étale algebra