Anyon condensation in mixed-state topological order

Ken KIKUCHI 謙 菊池

National Taiwan University

Based on 2406.14320 w/ KH Kam and FH Huang

Pure-state Topological Order

[Witten '89][Wen '89]

(Pure-state) **topological order** (TO) has peculiar properties:

- ・**topology-dependent** ground state degeneracies,
- ・**robust** under local deformations,
- ・**fractional** statistics, etc.

Pure-state Topological Order

[Witten '89][Wen '89]

(Pure-state) **topological order** (TO) has peculiar properties:

- ・**topology-dependent** ground state degeneracies,
- ・**robust** under local deformations,
- ・**fractional** statistics, etc.

[Kitaev '97]

⇒**Fault-tolerant** computation

Problem in pure-state TO computer

- ・Real computers interact with **environments**.
- ・The interaction reduces **pure-states** to **mixed-states**.

Problem in pure-state TO computer

- ・Real computers interact with **environments**.
- ・The interaction reduces **pure-states** to **mixed-states**.

⇒need **mixed-state TO**

Just like pure-state TOs are **classified** by modular fusion categories (MFCs),

{Pure-state TOs} ≅ {MFCs}, **[Kitaev '05]**

Just like pure-state TOs are **classified** by modular fusion categories (MFCs),

${Pure-state TOs} \cong {MFCs},$ **[Kitaev '05]**

mixed-state TOs are conjectured to be **classified** by **pre**modular fusion categories (Pre-MFCs),

 ${Mixed-state TOs} \simeq {Pre-MFCs}.$ **[Sohal-Prem '24][Ellison-Cheng '24]**

[Sohal-Prem '24][Ellison-Cheng '24]

${Mixed-state TOs} \cong {Pre-MFCs}$

[Ellison-Cheng '24] also conjectured **topological invariants** of mixed-state TOs by condensing all transparent bosonic anyons.

- **Which anyons** are condensable?
- How to condense **general anyons**?
- What are **topological invariants**?
- When condensation gives **pure-state TOs**?

- **Which anyons** are condensable?
- How to condense **general anyons**?
- What are **topological invariants**?
- When condensation gives **pure-state TOs**?

We answered all

Theorem 1.

[2406.14320 (KK-Kam-Huang)]

Condensable anyon =connected étale algebra

if all transparent anyons are bosons and all of them ∈ *A*.

[2406.14320 (KK-Kam-Huang)]

Clarified **how to** condense general anyons including

- ・**non-invertible** anyons,
- ・**successive** condensation.

Content

1. Preliminary

2. Results

3. Examples

Content

1. Preliminary

2. Results

3. Examples

fusion category =analogue of **representation**

2-dim. irrep. of $SU(2)$ obeys *SU*(2)

. $2 \otimes 2 = 4 = 1 \oplus 3.$

 $(c_i \otimes c_i^* = 1 \oplus \cdots)$

 $= 1 \oplus \cdots$

Analogously, fusion category *C* has

- \cdot simple objects $c_i \in C$,
- dual objects c_i^* of $c_i \in C$
- fusion product ⊗,
- direct sum ⊕.

Example: Ising fusion category (FC)

Ising FC={1,*η*,*N*} i.e., rank=3

It has fusion product

η ⊗ *η* = 1, *η* ⊗ *N* = *N* = *N* ⊗ *η*, *N* ⊗ *N* = 1 ⊕ *η* .

Example: Ising FC The product $\eta \otimes \eta = 1$, $\eta \otimes N = N = N \otimes \eta$, $N \otimes N = 1 \oplus \eta$ is described by fusion matrices (in the basis {1,*η*,*N*})

 $\textbf{Definition.}$ *i* ⊗ *j* = ⊕_{*k*∈*C*} $(N_i)_j^k k$

$$
N_1 = \begin{pmatrix} 1 & & \\ & 1 & \\ & & 1 \end{pmatrix}, \quad N_\eta = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad N_N = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}.
$$

Spherical fusion category :=fusion category w/ **the** quantum dimension d_i of c_i .

Spherical fusion category :=fusion category w/ **the** quantum dimension d_i of c_i .

Quantum dimensions obey the **same multiplication rule**

$$
d_i d_j = \sum_{k=1}^{\text{rank}(C)} N_{ij}^k d_k.
$$

Example: Ising FC

From fusions $\eta \otimes \eta = 1$, $\eta \otimes N = N = N \otimes \eta$, $N \otimes N = 1 \oplus \eta$, we get

$$
d_1 = 1
$$
, $d_\eta = 1$, $d_N = \pm \sqrt{2}$.

• Fusion category *C* may have **braiding** $c_{c_1,c_2}: c_1 \otimes c_2 \rightarrow c_2 \otimes c_1$. $(c_1, c_2 \in C)$

・**Braided fusion category** (BFC):=fusion category w/ braiding *c*. (w/ consistency conditions)

・**Pre-modular fusion category** (Pre-MFC):=spherical BFC.

 \cdot The braiding is characterized by **conformal dimension** h_i of c_i :

$$
\widetilde{S}_{ij} := \text{tr}(c_{c_{j}, c_{i}}c_{c_{i}, c_{j}}) = \sum_{k=1}^{\text{rank}(C)} N_{ij}^{k} \frac{e^{2\pi i h_{k}}}{e^{2\pi i (h_{i} + h_{j})}} d_{k}.
$$

• **Modular fusion category** (MFC):=pre-MFC w/ $det(S) \neq 0$.

Example: Ising FC

The FC has (in basis {1,*η*,*N*})

$$
\tilde{S} = \begin{pmatrix} 1 & 1 & \sqrt{2} \\ 1 & 1 & -\sqrt{2} \\ \sqrt{2} & -\sqrt{2} & 0 \end{pmatrix}
$$

.

The full Ising FC is an MFC, but fusion subcategory {1,*η*} is **not** modular.

• **Transparent** object:= $c_i \in \text{pre-MFC s.t. } \forall c_j, c_{c_j, c_i}c_{c_i, c_j} = id_{c_i \otimes c_j}$

\cdot **Boson**:=simple object \in BFC w/ $e^{2\pi i h} = 1$.

• **Transparent** object:= $c_i \in \text{pre-MFC s.t. } \forall c_j, c_{c_j, c_i}c_{c_i, c_j} = id_{c_i \otimes c_j}$

Example: $1 \in$ Ising FC, $\{1,\eta\}$ in $\{1,\eta\}$.

• **Boson**:=simple object \in BFC w/ $e^{2\pi i h} = 1$.

Example: $1 \in$ Ising FC, $1 \in \{1,n\}$.

Content

1. Preliminary

2. Results

3. Examples

Theorem 1.

[2406.14320 (KK-Kam-Huang)]

Condensable anyon =connected étale algebra

cf)[Kong '13]

if all transparent anyons are bosons and all of them ∈ *A*.

Theorem 2. **[2406.14320 (KK-Kam-Huang)]**

Proof .

Use mathematical

Theorem. [Bruguières '00][Mueger '98, '12]

A connected étale algebra $A \in P$ gives a surjective

functor $F : P \to M$ if all transparent objects have

 $e^{2\pi i h} = 1$ and A condenses all transparent simple objects. \square

How to condense **general anyons** [2406.14320 (KK-Kam-Huang)]

- 1. Turn part of simple objects in A to the new vacuum $\underline{0}$,
- 2. Check consistencies.

How to condense **general anyons** [2406.14320 (KK-Kam-Huang)]

- 1. Turn part of simple objects in A to the new vacuum $\underline{0}$,
- 2. Check consistencies.
	- Preservation of **quantum dim.**,
		- Consistency w/ original **fusion**,
	- Preservation o
• Consistency w.
• Associativity,
• Duality, etc
		-

Example. $\text{Rep}(S_3) = \{1, X, Y\}$ [2406.14320 (KK-Kam-Huang)]

Quantum dimensions: $(d_1, d_X, d_Y) = (1, 1, 2)$

Conformal dimensions: $(h_1, h_X, h_Y) = (0,0,0)$, all bosons

Example. $\text{Rep}(S_3)$ [2406.14320 (KK-Kam-Huang)]

$$
(d_1, d_X, d_Y, h_1, h_X, h_Y) = (1, 1, 2, 0, 0, 0)
$$

Rep(S₃) has 4 connected étale algebras

[KK '23]

 $A = 1$, $1 \oplus X$, $1 \oplus Y$, $1 \oplus X \oplus 2Y$.

Example 1. 1 ⊕ $Y \in \text{Rep}(S_3)$ [2406.14320 (KK-Kam-Huang)]

 $(d_1, d_x, d_y, h_1, h_x, h_y) = (1, 1, 2, 0, 0, 0)$

1. Turn into vacuum $\underline{0}$

 $1 \rightarrow 0$, $Y \to 0 \oplus Y_1$, w/ d_{Y_1} = 1 to preserve quantum dimension.

Example 1. 1 ⊕ $Y \in \text{Rep}(S_3)$ [2406.14320 (KK-Kam-Huang)]

 $(d_1, d_x, d_y, h_1, h_x, h_y) = (1, 1, 2, 0, 0, 0)$

2. Consistency

 $X \otimes Y = Y$ reduces to

$$
X \oplus (X \otimes_A Y_1) = \underline{0} \oplus Y_1.
$$

Since *X* is **not** condensed, $X \neq 0 \Rightarrow X = Y_1, Y_1 \otimes_A Y_1 = 0$.

Example 1. 1 ⊕ $Y \in \text{Rep}(S_3)$ [2406.14320 (KK-Kam-Huang)]

 $(d_1, d_x, d_y, h_1, h_x, h_y) = (1, 1, 2, 0, 0, 0)$

2. Consistency

With $Y \to 0 \oplus X$, $Y \otimes Y = 1 \oplus X \oplus Y$ reduces to

 $(0 \oplus X) \oplus_A (0 \oplus X) = 20 \oplus 2X$

consistent.

Example 1. 1 ⊕ $Y \in \text{Rep}(S_3)$ [2406.14320 (KK-Kam-Huang)]

Condensation of $1 \oplus Y \in \text{Rep}(S_3)$ turned

Example 2. 1 ⊕ $X \oplus 2Y \in \text{Rep}(S_3)$ [2406.14320 (KK-Kam-Huang)]

 $(d_1, d_x, d_y, h_1, h_x, h_y) = (1, 1, 2, 0, 0, 0)$

1. Turn into vacuum 0

 $1 \rightarrow 0$, $X \rightarrow 0$, $Y \to 0 \oplus Y_1$, w/ d_{Y_1} = 1 to preserve quantum dimension.

Example 2. 1 ⊕ $X \oplus 2Y \in \text{Rep}(S_3)$ [2406.14320 (KK-Kam-Huang)]

 $(d_1, d_x, d_y, h_1, h_x, h_y) = (1, 1, 2, 0, 0, 0)$

2. Consistency

 $Y \otimes Y = 1 \oplus X \oplus Y$ reduces to

$$
Y_1 \oplus (Y_1 \otimes_A Y_1) = 20.
$$

We need $Y_1 = 0$.

Example 2. 1 ⊕ $X \oplus 2Y \in \text{Rep}(S_3)$ [2406.14320 (KK-Kam-Huang)]

Condensation of $1 \oplus X \oplus 2Y \in \text{Rep}(S_3)$ turned

(This can also be obtained from the last example by $X \rightarrow 0.$)

Content

1. Preliminary

2. Results

3. Examples

[2406.14320 (KK-Kam-Huang)]

Example. TY $(\mathbb{Z}_2 \times \mathbb{Z}_2) = \{1, X, Y, Z, W\}$ [2406.14320 (KK-Kam-Huang)]

$$
d_1 = d_X = d_Y = d_Z = 1, \quad d_W = 2
$$

$$
(h_1, h_X, h_Y, h_Z, h_W) = (0, 0, \frac{1}{2}, \frac{1}{2}, \frac{n}{8}) \text{ w}/n = 0, 1, ..., 7
$$

Example. TY $(\mathbb{Z}_2 \times \mathbb{Z}_2) = \{1, X, Y, Z, W\}$ [2406.14320 (KK-Kam-Huang)]

The pre-MFC has $A = 1 \oplus X$.

Example. TY $(\mathbb{Z}_2 \times \mathbb{Z}_2) = \{1, X, Y, Z, W\}$ [2406.14320 (KK-Kam-Huang)]

1. Turn into vacuum $\underline{0}$

$$
1 \to 0,
$$

$$
X \to 0.
$$

Example. TY $(\mathbb{Z}_2 \times \mathbb{Z}_2) = \{1, X, Y, Z, W\}$ [2406.14320 (KK-Kam-Huang)]

2. Consistency

 $X \otimes Y = Z$ reduces to

$$
\underline{0} \otimes_A Y = Z,
$$

or $Y = Z$.

Example. TY $(\mathbb{Z}_2 \times \mathbb{Z}_2) = \{1, X, Y, Z, W\}$ [2406.14320 (KK-Kam-Huang)]

2. Consistency

 $W \otimes W = 1 \oplus X \oplus Y \oplus Z$ reduces to

 $W \otimes_A W = 20 \oplus 2Y$.

We find *W* must **split**. Why?

Example. TY $(\mathbb{Z}_2 \times \mathbb{Z}_2) = \{1, X, Y, Z, W\}$ [2406.14320 (KK-Kam-Huang)]

$$
W\otimes_A W=2\underline{0}\oplus 2Y
$$

Claim. *W* splits.

Proof .

Assume the opposite. Since W is self-dual,

the RHS contains only one vacuum $\underline{0}$, contradiction. \square

$$
\Rightarrow W \rightarrow W_1 \oplus W_2 \text{ w/ } d_{W_1} = 1 = d_{W_2}.
$$
\n(Recall $d_W = 2$.)

Example. TY $(\mathbb{Z}_2 \times \mathbb{Z}_2) = \{1, X, Y, Z, W\}$ [2406.14320 (KK-Kam-Huang)]

2. Consistency

The fusion is now

 $(W_1 \oplus W_2) \otimes_A (W_1 \oplus W_2) = 20 \oplus 2Y$.

There are 2 possibilities.

Example. TY $(\mathbb{Z}_2 \times \mathbb{Z}_2) = \{1, X, Y, Z, W\}$ [2406.14320 (KK-Kam-Huang)] $(W_1 \oplus W_2) \otimes_A (W_1 \oplus W_2) = 20 \oplus 2Y$ Since $W_1^* \oplus W_2^* = W_1 \oplus W_2$, 1) $W_{1,2}$ are self-dual, or 2) $W_1^* = W_2$. 1) $W_1 \otimes_A W_1 = 0 = W_2 \otimes_A W_2 \implies W_1 \otimes_A W_2 = Y = W_2 \otimes_A W_1$.

2) $W_1 \otimes_A W_2 = 0 = W_2 \otimes_A W_1 \implies W_1 \otimes_A W_1 = Y = W_2 \otimes_A W_2.$

Example. TY $(\mathbb{Z}_2 \times \mathbb{Z}_2) = \{1, X, Y, Z, W\}$ [2406.14320 (KK-Kam-Huang)]

2. Consistency

 $Y \otimes W = W$ reduces to

 $Y \otimes_A (W_1 \oplus W_2) = W_1 \oplus W_2$. We find $Y \otimes_A W_1 = W_2$, $Y \otimes_A W_2 = W_1$. Why?

Example. TY $(\mathbb{Z}_2 \times \mathbb{Z}_2) = \{1, X, Y, Z, W\}$ [2406.14320 (KK-Kam-Huang)]

 $Y \otimes (W_1 \oplus W_2) = W_1 \oplus W_2$

Claim. $Y \otimes_A W_1 = W_2$, $Y \otimes_A W_2 = W_1$.

Proof .

Consider when $W_{1,2}$ are self-dual, i.e., $W_1 \otimes_A W_1 = \underline{0}$.

Assume the opposite $Y \otimes_A W_1 = W_1$,

and fuse W_1 from the right to get $Y = 0$, a contradiction. Similarly for $W_1^* = W_2$ case. $N_1^* = W_2$ case. \square

Example. TY $(\mathbb{Z}_2 \times \mathbb{Z}_2) = \{1, X, Y, Z, W\}$ [2406.14320 (KK-Kam-Huang)]

Condensation of $1 \oplus X \in TY(\mathbb{Z}_2 \times \mathbb{Z}_2)$ turned

(The difference originated from duality.)

Summary

- Pure-state $TO \Rightarrow$ fault-tolerant computation.
- Real computer interacts w/ environment \Rightarrow Mixed-state TO.
- {Mixed-state TOS } \cong {Pre-MFC}. **[Sohal-Prem '24][Ellison-Cheng '24]**
- Topological inv. are obtained by condensation.
- Studied anyon condensation in mixed-state TOs. **[2406.14320 (KK-Kam-Huang)]**

Summary

[2406.14320 (KK-Kam-Huang)]

- Condensable anyon = connected étale algebra.
- Clarified how to condense general anyons.
- Clarified when Mixed-state $TO \Rightarrow Pure-state TO$.

• Computed topological invariants:

Appendix

[2406.14320 (KK-Kam-Huang)]

Imagine a superconducting material.

[2406.14320 (KK-Kam-Huang)]

Imagine a superconducting material.

⇒Cooper pairs are **bosons**

[2406.14320 (KK-Kam-Huang)]

Imagine a mixed-state TO B_1 , and condense $A \in B_1$.

[2406.14320 (KK-Kam-Huang)]

Imagine a mixed-state TO B_1 , and condense $A \in B_1$.

 \Rightarrow *A* \in *B*₁ is an **algebra object** w/ **unit morphism** $u: 1 \rightarrow A$

[2406.14320 (KK-Kam-Huang)]

Imagine a mixed-state TO B_1 , and condense $A \in B_1$.

[2406.14320 (KK-Kam-Huang)]

Imagine a mixed-state TO B_1 , and condense $A \in B_1$.

 \Rightarrow *A* $\otimes_{B_2} A \cong A$ giving multiplication morphism $\mu : A \otimes_{B_1} A \rightarrow A$

[2406.14320 (KK-Kam-Huang)]

Imagine a mixed-state TO B_1 , and condense $A \in B_1$.

[2406.14320 (KK-Kam-Huang)]

Imagine a mixed-state TO B_1 , and condense $A \in B_1$.

 \Rightarrow *A* \otimes_{B_1} *A* \cong *A* \oplus *X*, or *A* is **separable**

[2406.14320 (KK-Kam-Huang)]

Imagine a mixed-state TO B_1 , and condense $A \in B_1$.

[2406.14320 (KK-Kam-Huang)]

Imagine a mixed-state TO B_1 , and condense $A \in B_1$.

 \Rightarrow $c_{A,A}^{B_1} \cong id_{A \otimes_{B_1} A},$ or A is commutative

connected étale algebra :=commutative separable alg. w/ unique vacuum

Theorem 1.

[2406.14320 (KK-Kam-Huang)]

Condensable anyon =connected étale algebra