Bridging two semiclassical confinement mechanisms: monopole and center vortex

Yui Hayashi (YITP, Kyoto U.)

KEK Theory workshop 2024

December 11--13, 2024

Based on:

PRL **133**, 171902 (2024) [arXiv:2405.12402 [hep-th]] with Yuya Tanizaki (YITP) also [arXiv:2410.21392 [hep-th]] with Tatsuhiro Misumi (Kindai U.) and Yuya Tanizaki (YITP) (special thanks to Mithat Ünsal(NCSU))

Confinement mechanism(s)

Two promising scenarios for quark confinement: monopole and center vortex

<u>Dual superconductor picture</u> (monopole condensation)

[Nambu '74, 't Hooft '75, Mandelstam '76,...] monopole condensation

- ⇒ dual Meissner effect
- \Rightarrow linear $q\bar{q}$ -potential

Center-vortex proliferation ['t Hooft '78, ...] Wilson loop $= e^{\frac{2\pi i}{N}}$ Center vortex Center vortex: rotating Wilson loop by $e^{\frac{2\pi i}{N}}$. Proliferation $\Rightarrow \langle W(C) \rangle \sim e^{-\sigma \text{ (Area)}}$ cf.) restoration of $\mathbb{Z}_N^{[1]}$: proliferation of co-dim-2 defects

Connection between them? [Ambjørn-Giedt-Greensite '99, Engelhardt-Reinhardt '99, Cornwall '99,...] "monopole as junction of center vortices"

Semiclassical approaches to confinement

Deformation with keeping confinement

SU(N) Yang-Mills theory (strongly coupled, hard problem)

Deformed theory (weakly coupled, easy problem)

Solve this theory (semiclassically) & study confinement/vacuum structure

Semiclassical approaches to confinement

Motto: deforming SU(N) YM to **weakly-coupled** theory with **keeping confinement**.

"adiabatic continuity" (confinement phase, w/o transition)

3d monopole semiclassics

[Ünsal '07, Ünsal-Yaffe '08,...]

SU(N) Yang-Mills on $\mathbb{R}^3 \times S^1$ with "center-stabilizing deformation" \Rightarrow 3d $U(1)^{N-1}$ gauge theory

+ monopole gas (cf. [Polyakov '77])

2d center-vortex semiclassics

[Tanizaki-Ünsal '22, ...] SU(N) Yang-Mills on $\mathbb{R}^2 \times T^2$ with 't Hooft flux \Rightarrow confinement by 2d center-vortex gas

Bridging two semiclassics

[YH, Tanizaki '24]

Question

Motto: deforming SU(N) YM to weakly-coupled one with keeping confinement.

3d monopole semiclassics

[Ünsal '07, Ünsal-Yaffe '08,...]

SU(N) Yang-Mills on $\mathbb{R}^3 imes S^1$ with

"center-stabilizing deformation"

 \Rightarrow 3d $U(1)^{N-1}$ gauge theory

+ monopole gas

2d center vortex semiclassics

[Tanizaki-Ünsal '22, ...]

SU(N) Yang-Mills on $\mathbb{R}^2 imes T^2$ with 't

Hooft flux

⇒ confinement by 2d center-vortex gas

Question: Relation between them? How monopole transmutes to center vortex?

Interpolating setup

Interpolating setup: SU(N) Yang-Mills on $\mathbb{R}^2 imes (S^1)_3 imes (S^1)_4$ (L_4 : always small) center-stabilizing deformation

3d monopole semiclassics

SU(N) Yang-Mills on $\mathbb{R}^3 \times S^1$ with center-stabilizing deformation

2d center vortex semiclassics

SU(N) Yang-Mills on $\mathbb{R}^2 \times T^2$ with 't Hooft flux

3d effective theory on $\mathbb{R}^2 \times (S^1)_3$

Interpolating setup: SU(N) Yang-Mills on $\mathbb{R}^2 imes (S^1)_3 imes (S^1)_4$ (L_4 : always small) center-stabilizing deformation

small L_4 , adjoint higgsing by $P_4 \sim {\it C}$

3d $U(1)^{N-1}$ gauge theory + monopoles on $\mathbb{R}^2 \times \left(S^1\right)_3$ with "Weyl-permutation-twisted" boundary conditions

e.g.) clock matrix for N = 3 $C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{\frac{2\pi i}{3}} & 0 \\ 0 & 0 & e^{\frac{4\pi i}{3}} \end{pmatrix}$

4d 't Hooft flux ($\mathbb{Z}_N^{[1]}$ background) = 3d $\mathbb{Z}_N^{[0]}$ -twisted boundary condition for P_4 = Weyl Permutation (in terms of Cartan $U(1)^{N-1}$)

Claims:

setup: SU(N) Yang-Mills on
$$\mathbb{R}^2 imes (S^1)_3 imes (S^1)_4$$
 center-stabilizing deformation

- 1. 3d effective theory on $\mathbb{R}^2 \times (S^1)_3 \Rightarrow 2d$ center-vortex gas on \mathbb{R}^2
- 2. BPS/KK monopole in $\mathbb{R}^2 \times (S^1)_3$ (3d monopole-instanton)
- \Rightarrow center vortex on \mathbb{R}^2 (2d center-vortex-instanton)

(1) From 3d monopole gas to 2d center-vortex gas

3d $U(1)^{N-1}$ gauge theory + monopoles on $\mathbb{R}^2 \times \left(S^1\right)_3$ with "Weyl-permutation-twisted" boundary conditions

$$S_{3d}[\vec{\sigma}] = \int d^3x \left[\frac{\#g^2}{L_4} |d\vec{\sigma}|^2 - \#e^{-\frac{8\pi^2}{Ng^2}} \sum_{i=1,\dots,N} \cos(\vec{\alpha}_i \cdot \vec{\sigma} + \theta/N) \right]$$

 $\vec{\alpha}_1$, ..., $\vec{\alpha}_{N-1}$: simple roots (BPS monopoles) $\vec{\alpha}_N \ (= -\vec{\alpha}_1 - \cdots - \vec{\alpha}_{N-1})$: affine root (KK monopole)

 $L_3 \ll \Lambda^{-1}$: restricted to $\vec{\sigma} = S^{-1}\vec{\sigma}$

2d center-vortex gas

Zeromode: only N vacua
$$\vec{\sigma} = \vec{\sigma}_k = \frac{2\pi k}{N} (\vec{\mu}_1 + \dots + \vec{\mu}_{N-1})$$
 $k = 0, \dots, N-1$

$$Z_{\mathbb{R}^{2}\times(S^{1})_{3}} = \int_{\substack{\overrightarrow{\sigma}\ (x,x_{3}+L_{3})\\ =S^{-1}\overrightarrow{\sigma}(x,x_{3})}} \mathcal{D}\overrightarrow{\sigma} e^{-S_{3}d[\overrightarrow{\sigma}]} \approx \sum_{\substack{\overrightarrow{\sigma}=\overrightarrow{\sigma}_{k}\\ k\in\mathbb{Z}_{N}}} e^{-S_{3}d[\overrightarrow{\sigma}]} = \sum_{k\in\mathbb{Z}_{N}} e^{\#V_{2}d} e^{-\frac{8\pi^{2}}{Ng^{2}}} \cos(\frac{\theta+2\pi k}{N}) = Z_{2d \text{ gas}}$$

Understand (somewhat ad-hoc) 2d center-vortex semiclassics from 3d monopole semiclassics

(2) Microscopically: monopole in $\mathbb{R}^2 \times (S^1)_2$

BPS/KK monopole in 3d effective theory:

magnetic charge $\vec{\alpha}_i \Rightarrow \nabla^2 \vec{\sigma} \sim 2\pi \vec{\alpha}_i \delta^{(3)}(x - x_*)$

boundary condition: $\vec{\sigma}(x, x_3 + L_3) = S^{-1}\vec{\sigma}(x, x_3)$

⇒ "mirror image": infinite chain of BPS/KK monopoles

$$\vec{\sigma} \sim "\sum_{n \in \mathbb{Z}} \frac{\vec{\alpha}_{i-n \pmod{N}}}{|x - x_* - nL_3 \hat{x}_3|} "$$

• A proper expression (with good convergence):
$$\vec{\sigma} \sim \sum_{k \in \mathbb{Z}} \left[\sum_{\ell \in \mathbb{Z}_N} \vec{v}_{i-\ell \pmod{\mathbb{N}}} \left\{ \frac{1}{|x-x_*-(Nk+\ell)L_3 \, \hat{x}_3|} - \frac{1}{|x-x_*-(Nk+\ell+1)L_3 \, \hat{x}_3|} \right\} \right]$$

 \vec{v}_i : weight vector of defining representation

$$\vec{\alpha}_i = \vec{\nu}_i - \vec{\nu}_{i+1}$$

outgoing magnetic flux

$$\vec{\Phi} = 2\pi \vec{\nu}_i$$

incoming magnetic flux

$$\overrightarrow{\Phi} = 2\pi \vec{v}_{i+1}$$

Example: SU(2) case

Adjoint higgsing by P_4 : $SU(2) \rightarrow U(1)$ \Rightarrow one compact scalar $\sigma \sim \sigma + 2\pi$

- One compact scalar $\sigma \sim \sigma + 2\pi$
- BPS monopole: magnetic charge +1, KK monopole: magnetic charge -1
- boundary condition (from 't Hooft twist): $\sigma(x, x_3 + L_3) = -\sigma(x, x_3)$

"mirror image" solution:

"Flux Fractionalization":

1/N fractional magnetic flux, rotating the Wilson loop by a center element (-1)

3d BPS/KK monopoles become 2d center vortex

- The magnetic flux (of size $O(NL_3)$) is indeed center vortex: Wilson loop acquires $e^{-2\pi i/N}$ phase.
- 3d BPS/KK monopole-instanton = 2d center-vortex-instanton:

The 3d/2d semiclassical confinement mechanisms are essentially same!

- "monopole as junction of center vortex" (realizing the old expectation!)
- Species of monopole (BPS/KK) is included in extended moduli $x_3 \in [0, NL_3)$

Summary (of main topic)

Quark confiners: monopole and center vortex

Weak-coupling semiclassical realizations:

3d monopole semiclassics

[Ünsal '07, Ünsal-Yaffe '08,...]

SU(N) Yang-Mills on $\mathbb{R}^3 \times S^1$ with

"center-stabilizing deformation"

⇒ confinement by 3d monopole gas

2d center vortex semiclassics

[Tanizaki-Ünsal '22, ...]

SU(N) Yang-Mills on $\mathbb{R}^2 imes T^2$ with 't

Hooft flux

⇒ confinement by 2d center-vortex gas

This work: Consider an interpolating setup on $(\mathbb{R}^2 \times S^1) \times S^1$

Monopole in $\mathbb{R}^2 imes S^1$

"monopole as junction of center vortices"

Center vortex in 2d

Bonus: 3d/2d continuity for SYM

[YH, Misumi, Tanizaki '24]

$\mathcal{N}=1$ super-Yang-Mills theory

• $\mathcal{N}=1$ SYM theory = one-flavor (massless) adjoint QCD

Field contents: SU(N) gluon a_{μ} + adjoint Weyl fermion λ ("gluino")

Well-known IR scenario: $(\mathbb{Z}_{2N})_{chiral} \to \mathbb{Z}_2$ SSB

- 3d semiclassics is well developed [Davies-Hollowood-Khoze-Mattis '99,]
- One can consider 2d semiclassics for SYM [Tanizaki-Ünsal '22], but there were some unclear points.

Here, we focus:

One of the unclear points of 2d semiclassics:
 2d Wilson loop shows the perimeter law. deconfinement? What happens?

Let us observe what happens from the 3d perspective.

Wilson loop in 3d semiclassics

- Let us consider SU(2) $\mathcal{N}=1$ SYM, for simplicity.
- Wilson loop: a defect operator with nontrivial monodoromy $\sigma \sim \sigma + 2\pi$
- Monopole carries fermionic zeromodes; Magnetic bion (BPS-KK molecule; magnetic charge 2/topological charge 0) induces the bosonic potential: $\sim \cos(2\sigma)$: two minima
- Double string picture:

The Wilson loop emits two kinks [Anber-Poppitz-Sulejmanpasic '15]

$$\sigma = 0$$
 (outside)

confining string = pair of two kinks

Wilson loop transmutes to domain wall

- We consider SU(2) $\mathcal{N}=1$ SYM.
- **Double string picture**: magnetic-bion potential $\sim \cos(2\sigma)$

The Wilson loop (defect $\sigma \sim \sigma + 2\pi$) emits two kinks ($\Delta \sigma = \pi$) [Anber-Poppitz-Sulejmanpasic '15]

• Reduction from 3d to 2d: consider $\mathbb{R}^2 \times S^1$ with the twisted boundary condition

For large Wilson loop $|C| \gg L_3$:

This is domain wall of $(\mathbb{Z}_{2N})_{\text{chiral}}!$

3d area law/2d perimeter law (Area) = $L_3 \times$ (Perimeter)

Wilson loop becomes chiral DW \Rightarrow $(\mathbb{Z}_{2N})_{chiral}$ SSB implies perimeter law.

Summary (of main topic)

Quark confiners: monopole and center vortex

Weak-coupling semiclassical realizations:

3d monopole semiclassics

[Ünsal '07, Ünsal-Yaffe '08,...]

SU(N) Yang-Mills on $\mathbb{R}^3 \times S^1$ with

"center-stabilizing deformation"

⇒ confinement by 3d monopole gas

2d center vortex semiclassics

[Tanizaki-Ünsal '22, ...]

SU(N) Yang-Mills on $\mathbb{R}^2 imes T^2$ with 't

Hooft flux

⇒ confinement by 2d center-vortex gas

This work: Consider an interpolating setup on $(\mathbb{R}^2 \times S^1) \times S^1$

Monopole in $\mathbb{R}^2 imes S^1$

"monopole as junction of center vortices"

Center vortex in 2d

backup

3d Monopole semiclassics

[Ünsal '07, Ünsal-Yaffe '08,...] (cf. [Davies-Hollowood-Khoze-Mattis '99,...])

• SU(N) Yang-Mills on $\mathbb{R}^3 \times S^1$ with "center-stabilizing deformation" [Ünsal-Yaffe '08]: $S = S_{YM} + \int d^3x \sum_{n=1}^{[N/2]} a_n |\text{tr}(P^n)|^2 \qquad \text{Add a potential for Polyakov loop (by hand) to keep center symmetry}$

$$S = S_{YM} + \int d^3x \sum_{n=1}^{\lfloor N/2 \rfloor} a_n |\text{tr}(P^n)|^2$$

- \Rightarrow Center symmetry is kept for **small** S^1 (, realizing weak-coupling confinement)
- 3d effective theory on \mathbb{R}^3

The Polyakov loop behaves as an adjoint scalar field.

At the center symmetric vacuum, " $\langle P \rangle \sim C$ " (up to gauge)

 \Rightarrow adjoint higgsing $SU(N) \rightarrow U(1)^{N-1}$

e.g.) clock matrix for N=3

$$C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{\frac{2\pi i}{3}} & 0 \\ 0 & 0 & e^{\frac{4\pi i}{3}} \end{pmatrix}$$

3d effective theory = 3d $U(1)^{N-1}$ gauge theory + monopoles

Polyakov confinement by dilute gas of monopoles (in 3d Abelian gauge theory) [Polyakov '77]

Magnetic Debye screening \Rightarrow magnetic fluctuations enhanced \Rightarrow area law $\langle W(C) \rangle \sim e^{-\sigma \, (\text{Area})}$

3d Monopole semiclassics (some details)

• N kinds of monopoles: $Q_{top} = 1/N$ fractional instantons

"compactness of adjoint higgs"
[Kraan-van Baal '98] [Lee-Lu '98]

Magnetic charge: $\vec{\alpha}_1$

$$\vec{\alpha}_2$$

.

$$\vec{\alpha}_{N-1}$$

 $\vec{\alpha}_N (= -\vec{\alpha}_1 - \dots - \vec{\alpha}_{N-1})$

3d effective theory

 $\vec{\alpha}_1, \cdots, \vec{\alpha}_{N-1}$: simple roots $\vec{\alpha}_N \ (= -\vec{\alpha}_1 - \cdots - \vec{\alpha}_{N-1})$: affine root

3d abelian duality: $U(1)^{N-1}$ gauge field $\rightarrow U(1)^{N-1}$ -valued compact boson $\vec{\sigma}$ $(d\vec{\sigma} = *\vec{f})$ In terms of $\vec{\sigma}$ (dual photon/magnetic potential), the 3d effective theory is,

In terms of
$$\vec{\sigma}$$
 (dual photon/magnetic potential), the 3d effective theory is, Monopole amplitude
$$S = \int d^3x \left[\frac{\#g^2}{L} |d\vec{\sigma}|^2 - \#e^{-\frac{8\pi^2}{Ng^2}} \sum_{i=1,\cdots,N} \cos(\vec{\alpha}_i \cdot \vec{\sigma} + \theta/N) \right]$$

$$[\mathcal{M}_i] \sim e^{-\frac{8\pi^2}{Ng^2}} e^{i\vec{\alpha}_i \cdot \vec{\sigma} + i \, \theta/N}$$

2d center-vortex semiclassics

[Tanizaki-Ünsal '22,] (cf. [Yamazaki-Yonekura '17])

Setup: SU(N) Yang-Mills on $\mathbb{R}^2 imes T^2$ with 't Hooft flux

• 't Hooft flux for T^2 (or $\mathbb{Z}_N^{[1]}$ background)

A unit 't Hooft flux \Leftrightarrow choose $g_3(0)g_4(L)g_3^{\dagger}(L)g_4^{\dagger}(0)=e^{\frac{2\pi i}{N}}$. $(g_3(x_4),g_4(x_3):$ transition functions on T^2)

Up to gauge, we can take $g_3 = S$, $g_4 = C$ (shift and clock matrices of SU(N)).

- Consequences from 't Hooft-twisted compactification
 - ✓ Center symmetry is kept at small T^2

Classically,
$$P_3 = S$$
 and $P_4 = C \Rightarrow \langle \operatorname{tr} P_3 \rangle = \langle \operatorname{tr} P_4 \rangle = 0$.

- ✓ Perturbatively gapped gluons: O(1/NL) KK mass
- ✓ Numerical evidence for center vortex/fractional instantons (as a local solution)

[Gonzalez-Arroyo-Montero '98, Montero '99,].

$$\begin{cases}
a(\vec{x}, x_3 + L, x_4) = g_3^{\dagger} a g_3 - i g_3^{\dagger} d g_3 \\
a(\vec{x}, x_3, x_4 + L) = g_4^{\dagger} a g_4 - i g_4^{\dagger} d g_4
\end{cases}$$

$$\underbrace{e.g.}_{S} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{\frac{2\pi i}{3}} & 0 \\ 0 & 0 & e^{\frac{4\pi i}{3}} \end{pmatrix}$$

exists locally, (not globally if `regularity' at infinity is imposed)

2d center-vortex semiclassics [Tanizaki-Ünsal '22]

Dilute gas of center vortices

The center-vortex and anti-center-vortex vertices are:

center-vortex vertices are:
$$[\mathcal{V}] = Ke^{-\frac{8\pi^2}{Ng^2} + i\frac{\theta}{N}}, \qquad [\bar{\mathcal{V}}] = Ke^{-\frac{8\pi^2}{Ng^2} - i\,\theta/N}$$

For calculating partition function, we compactify \mathbb{R}^2 without 't Hooft flux.

 \Rightarrow total topological charge is constrained $Q_{top} \in \mathbb{Z}$

with a dimensionful constant K.

Then, the dilute gas approximation yields, (only configurations with $Q_{top} \in \mathbb{Z}$ are admitted)

$$Z_{2d} = \sum_{n,\overline{n} \geq 0} \frac{1}{n! \, \overline{n}!} \delta_{n-\overline{n} \in N\mathbb{Z}} \left(VKe^{-\frac{8\pi^2}{Ng^2} + i\frac{\theta}{N}} \right)^n \left(VKe^{-\frac{8\pi^2}{Ng^2} - i\frac{\theta}{N}} \right)^{\overline{n}}$$

$$= \sum_{k \in \mathbb{Z}_N} \exp \left[-V \left(-2Ke^{-\frac{8\pi^2}{Ng^2}} \cos \left(\frac{\theta - 2\pi k}{N} \right) \right) \right]$$

N semiclassical vacua

Energy density of k-th vacuum
→multibranch structure!

One can also derive area-law falloff of the Wilson loop from the dilute gas of center vortices.