Numerical studies of the type IIB matrix model with the gauge fixed Lorentz symmetry

Ashutosh Tripathi (KEK, SOKENDAI)

Talk at KEK Theory Workshop 2024 December 12, 2024

In collaboration with: Chou Chien–Yu and Prof. Jun Nishimura (in preparation)

Outline

- 1. Introduction: "Gauge-fixed" type IIB matrix model
- 2. Saddle point analysis of N=2 bosonic "gauge-fixed" type IIB matrix model
- 3. The generalized Lefschetz thimble method
- 4. Numerical results
- 5. Comparison with other regularizations of the model
- 6. Summary and future prospects

1. Introduction: "Gauge-fixed" type IIB matrix model

Brief summary of W.Piensuk's Talk

- $Z = \int dA e^{i(S_b + S_m)}$ Lorentzian IKKT model with mass term (gauge-unfixed):
	- $SO(9,1)$ Lorentz symmetry $A_{\mu} = N \times N$ Hermitian matrices $D = No$. of bosonic matrices
- Gauge-fixed IKKT model:

minimize $tr(A_0^2)$ w.r.t Lorentz tr. $\Delta_{FP}[A] = det\Omega$

$$
S_{b} = -\frac{1}{4} Ntr([A_{\mu}, A_{\nu}][A^{\mu}, A^{\nu}])
$$

$$
S_{m} = -\frac{1}{2} N\gamma tr(A_{\mu}A^{\mu})
$$

$$
Z = \int dA \; e^{i(S_b + S_m)} \Delta_{\rm FP}[A] \!\!\left(\prod_{j=1}^D \delta(tr(A_0 A_j)) \right)
$$

gauge-fixing condition

$$
\Omega_{\rm ij}={\rm tr}(A_0)^2\delta_{\rm ij}+{\rm tr}(A_{\rm i}A_{\rm j})
$$

• Classical solns. of gauge-unfixed model:

$$
\text{EOM:}\; [\text{A}^{\nu},[\text{A}_{\nu},\text{A}_{\mu}]]-\gamma \text{A}_{\mu}=0
$$

$$
\begin{array}{|c|c|c|c|}\n\hline\n\gamma < 0 & A_{\mu} = 0 \\
\hline\n\gamma > 0 & A_{\mu} = 0 & A_{\mu} = \begin{cases}\n\sqrt{\frac{\gamma}{2}} \sigma_{\mu} & \mu = 1, 2, 3 \\
0 & \text{otherwise}\n\end{cases} & A_{\mu} = \begin{cases}\n\sqrt{\gamma} \sigma_{\mu} & \mu = 1, 2 \\
0 & \text{otherwise}\n\end{cases}\n\end{array}
$$

(trivial solution)

(squashed Pauli solution)

2. Saddle point analysis of N=2 bosonic "gauge-fixed" type IIB matrix model

Saddle points of the "gauge-fixed" model

Saddle point equation : term from gauge-fixing $\Omega_{ii}^{\prime} = \text{tr}(A_0)^2 \delta_{ii} + \text{tr}(A_i A_i)$ Using the $SO(D)$ symmetry, we can impose: $tr(A_0A_i)=0$ for $i\neq j$ $\kappa_0 = \sum_{i=1}^{\alpha} \kappa_i$ $[\mathbf{A}_{\nu},[\mathbf{A}^{\nu},\mathbf{A}_{\mu}]]=(\gamma+\mathbf{i}\kappa_{\mu})\mathbf{A}_{\mu}$ $\kappa_i = \frac{2}{N\{\text{Tr}(A_0)^2 + \text{Tr}(A_i)^2\}}$ FP determinant induces mass like term in eq. of motion

In $\gamma \to \infty$: solutions reduce to those of gauge unfixed model : Pauli, Squash Pauli, Trivial

Ansatz for the saddle points

Behaviour of the solutions at $\gamma \to \infty$

for $\gamma \to \infty$, the solutions reduce to those of gauge unfixed model

$$
\boxed{\gamma > 0 \quad A_{\mu} = 0 \quad A_{\mu} = \begin{cases} \sqrt{\frac{\gamma}{8}} \sigma_{\mu} & \mu = 1, 2, 3 \\ 0 & \text{otherwise} \end{cases} \quad A_{\mu} = \begin{cases} \sqrt{\frac{\gamma}{4}} \sigma_{\mu} & \mu = 1, 2 \\ 0 & \text{otherwise} \end{cases}} \quad \text{(rivial solution)}
$$
 (Pauli solution) (squashed Pauli solution)

Solutions that are obtained by Wick rotation from above are irrelevant from the viewpoint of Picard-Lefschetz theory.

$$
A_0 = i\sqrt{\frac{\gamma}{8}}\sigma_1
$$

\n
$$
A_1 = \sqrt{\frac{\gamma}{8}}\sigma_2
$$

\n
$$
A_2 = \sqrt{\frac{\gamma}{8}}\sigma_3
$$

\n
$$
A_j = 0 \text{ for } j \ge 3
$$

\n
$$
A_j = 0 \text{ for } j \ge 3
$$

\n
$$
A_1 = \sqrt{\frac{\gamma}{4}}\sigma_2
$$

\n
$$
A_j = 0 \text{ for } j \ge 2
$$

\n
$$
A_j = 0 \text{ for } j \ge 3
$$

Pauli type solution can't be relevant

3. The Generalized Lefschetz thimble method (GTM)

$Picard - Lefschetz$ theory

(multi-dimensional version of steepest decent method)

Complex phase of reweighting factor is concentrated \Longrightarrow Sign problem solved

4. Numerical Results

Simulation results for the "gauge-fixed" model (by the generalized thimble method)

The dominant saddle point is different from gauge-unfixed model for $\gamma > 0$.

5. Comparison with other regularizations of the model

model. For $D > 5$, P dominates over sP in gauge-unfixed model.

Comparison with $SO(D)$ symmetric model $Z = \int dA e^{i(S_b + S_m)}$ obtained by replacing $A_0 = iA_D$

equivalence for $\gamma \leq -0.5$

trivial saddle dominates in this region

The peak at $\gamma = 0$

 \equiv commuting solutions

 $[A_\mu,A_\nu]=0$

SO(D) model: Oscillating behaviour SO(D-1,1) : Classical behaviour at large γ

very different in $\gamma \geq 0$

Oscillating behaviour in the SO(D) model at larger γ

Perturbative calculations around Pauli and squashed Pauli gives :

$$
Z_{\text{pauli}} \simeq \frac{\pi^{\frac{3(D+1)}{2}} \gamma^{\frac{3D}{2} - 6} e^{\frac{-3i}{8} \gamma^2}}{2^{3(D-4)} \Gamma(\frac{D}{2}) \Gamma(\frac{D-1}{2}) \Gamma(\frac{D-2}{2})}
$$

$$
Z_{\text{s-pauli}} \simeq \frac{\pi^{\frac{3D+2}{2}} \gamma^{\frac{D}{2} - 1} e^{-\frac{i}{2} \gamma^2}}{2^{D - \frac{7}{2}} (-i)^{\frac{D-1}{2}} \Gamma(\frac{D}{2}) \Gamma(\frac{D-1}{2})}
$$

Oscillating behaviour: Due to Interference between P and sP (most clear for D=5)

$SO(D)$ symmetric model at large D

$$
Z_{s-\text{pauli}} \simeq \frac{\pi^{\frac{2}{2} - \gamma^2 - e^{-2}}}{2^{D-\frac{7}{2}}(-i)^{\frac{D-1}{2}}\Gamma(\frac{D}{2})\Gamma(\frac{D-1}{2})}
$$

For $D > 5$, Pauli dominates over sqPauli at larger γ

prediction at $D = \infty$ D expansion)

As D increases, the oscillating behaviour becomes weaker

6. Summary and future prospects

Summary

- Investigated the "gauge-fixed" model, proposed recently to regularize the type IIB matrix model without breaking the Lorentz symmetry.
- For N=2, D=5, $\gamma \rightarrow 0$ limit seems to be smooth.
- In $\gamma > 0$ region, the dominant saddle and behaviour of gauge-fixed model is different, as compared to gauge-unfixed model and SO(D) symmetric model.
- In γ $<$ 0 region, gauge-unfixed model is equivalent to SO(10) symmetric model, the gauge-fixed model is equivalent to them only for large $\gamma < 0$.

Future prospects

• Simulations for larger D, larger N and including fermions.

Thank you so much for your attention

Backup

