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1. Introduction: “Gauge-fixed”
type |IIB matrix model



Brief summary of W.Piensuk’s Talk

e Lorentzian IKKT model with mass term (gauge-unfixed): 7 = /dA el(Sb+5m)

1
SO(9, 1) Lorentz symmetry Sy, = _iNtr([Am AL|[AH, AY))
A, = N x N Hermitian matrices 1

Sm = — §nytr(AJuA‘”‘)

D = No. of bosonic matrices

D
* Gauge-fixed IKKT model: 7 = / dA ') App[A]| | [ 6(tr(A0A;))
j=1
minimize tr(Aj) w.r.t Lorentz tr. App|A] = det2 gauge-fixing condition

Qij = tI'(AO)2($iJ' + tI'(AiAj)

e (lassical solns. of gauge-unfixed model:
EOM: [A”,[Ay, Au]l = YA, =0

vy< 0| 4,=0

")/>O A, =0 {\fa,u w=1,23 AMZ{WU” pw=1,2

otherwise O otherwise

(trivial solution) (Pauli solution) (squashed Pauli solution)



2. Saddle point analysis of N=2 bosonic
“gauge-fixed” type IIB matrix model



Saddle points of the “gauge-fixed” model

° Saddle point equation . ..................................................................................

i o \ term from
v 1
Ay, [AY ALl =7Au + Nnm,Tr(Q 6A gauge-fixing

Q= tr(Ag)Qé1J + tr(A;A;)
e Using the SO(D) symmetry, we can impose :

tI'(AgAj) =0 for i # j

A, [AY, ALl = (v Hirp))A, Ko =Z
2
N{Tr(Aog)? + Tr(A;)?}

i —

FP determinant induces mass like
term in eqg. of motion

In v — oo : solutions reduce to those of gauge unfixed model
: Pauli, SquashPauli, Trivial



Ansatz for the saddle points

A, [AY Apl] = (v +iku) Ay

A natural ansatz

Ay = x0q
dz4 A1 =yoo
N=2 Ay = 703
A;=0
solutionsaty > 0
tr (Ag)?

Pauli solution does not exist

in gauge-fixed model [N
Trivial type -

(z,y,2 = 0) E;i‘l‘

d
2
Ko = ; i M N{Tr(Ag)? + Tr(A)?}

Ay # 0 needed for finite ~
otherwise App[A] =0
for 3<j<d
(“type” =y — oo behaviour)

irrelevant saddles —> '@ (y or z — 0)

iSquashedPauIi
®! type | type

tr (A4, AH)

B
-------



Behaviour of the solutions at v — oo

for v — o0, the solutions reduce to
those of gauge unfixed model

1 =1,2,3 Yo =1.2
A — O A — \/;O-HJ l’L ? ) A — 4 [j, IJ’ ’
v >0 : g { 0 otherwise g 0 otherwise

(trivial solution) (Pauli solution) (squashed Pauli solution)

Solutions that are obtained by Wick rotation from above are irrelevant from
the viewpoint of Picard-Lefschetz theory.

pm— . F}/
A():i\/go'l A(}:l 10'1
/ — — X
A, = %02 Ar= 472

A; =0forj>2
A =1/ 2os | Ay=0forj 2

A;=0forj>3 At large «, relevant saddles should have Ag — 0

—

Pauli type solution can’t be relevant




3. The Generalized Lefschetz thimble method
(GTM)



Picard — Lefschetz theory

(multi-dimensional version of steepest decent method)
7 — / dx e—S(x): S(X) cC oscillating integral (sign problem)
RN

relevant saddles
(can be reached by flow) 35(3)

Lefschetz thimbles

saddle point : 0
0z

Flow equation:
izk(}{' o) = 05(z(x; o))
30‘ ’ azk

- Histogram

* / irrelevant saddles
* (unreachable by flow)
Due to Cauchy’s theorem

g

Oscillating integral = Sum over all the thimbles associated N
with relevant saddle points | ‘

=05 00 05

Complex phase of reweighting factor is concentrated === Sign problem solved



4. Numerical Results



Simulation results for the “gauge-fixed” model
(by the generalized thimble method)

%Re‘:TrApA% ;}H‘ — %
D=5 6l

- v > 0 region is described
- by a saddle point that reduce
squashed Pauli as v —

-

o
T -

v < 0 region is described
by a saddle point that reduces to
trivial saddle as v — —o0.
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~ It continues to Wick-rotated i xPauli
at v < 0, and hence becomes irrelevant.

The dominant saddle point is different from gauge-unfixed model for y > 0.



Smooth behavior observed at v ~ O

1
— 7
1 two state signal Re <\/—tr (ALA )>

—ReTrA,A"

D=5

D observed at vy =0

d . Ul 4000 & !
L M un 11 marurn _JIH-

.;;;t,m.g.; W |




5. Comparison with other regularizations
of the model



Comparison to the “gauge-unfixed” model

 Gauge-unfixed model :

Z<oo (vy<0)
Z=00 (y>0)

7 = / dA ei(Sp+Sm)

N

Sy, = — Ztr[A’“ AL|[AF, AY]

Sm = %ny(trA% — trA?)

1

Re[—trA %]
N/

o gauge-unfixed model 35}
» gauge-fixed model al
3 L
2 L

1

Im[—trA %]
N

o gauge-unfixed model 5}

+ gauge-fixed model al

equivalence for ¥ < —0.5

trivial saddle dominates in this region

Difference in y > 0 region is anticipated. Pauli sol. doesn’t exist in gauge-fixed
model. For D > 5, P dominates over sP in gauge-unfixed model.




Comparison with SO(D) symmetric model
7 — / dA i(5»+Sm)  obtained by replacing Ay = iAp

1 1
Re[—trA 2 Im[—trA 2
o] D=5 o] D=5
o SO(D) model 6f o SO(D) model

+ gauge-fixed model + gauge-fixed model

-
-
,,,,
~~~~~
- S
- S
- -~
-

2 ] ilié{ = ® s - °
4 —iz -4 -2
-1
equivalence for v < —0.5 very different in v > 0
trivial saddle dominates in this region
The peak at v =0 SO(D) model : Oscillating behaviour
= commuting solutions SO(D-1,1) : Classical behaviour at large y

[AMAU] =0



Oscillating behaviour in the SO(D) model at larger ~

1 2
Re[—1trA,"]
D

— squashpauli = y ~ 3.5

— pauli = i‘f - 2625

iuu.lluuj.lL.lImI..._Lﬂlilium.lllhhth.hh.n.u N P

two state signal

10000 20000 30000 40000  Sooob'C fime

Perturbative calculations around
Pauli and squashed Pauli gives :

3(D+1) 3D _ g =—3i_2
T 2 Y2 e s 7’

Z auli =
Pl 93091 ()T (25 hr (P52

i _ 2
T 2 7y e 27
D—

3D+2 %_1
205 (~i) " T(3)r(°5)

Zs—pauli =~

Oscillating behaviour: Due to Interference
between P and sP (most clear for D=5)

O D=5

- perturbative

critical dimension

D=5 1

Re[—trA %]
J

D=5

Im[—trA 2]
N

O D=5 5t

- perturbative 4t




SO(D) symmetric model at large D

1 2
Re[—trA, ]
s/ D

3(D+1) 3D _g —3i,2

Zisauli ™ M2 oy es’ O D=5
pauli = 23(0-4(D)(R51)r(252) )
N D=10
, ﬂ_gn;rz %_16_%72 O D=20
s—pauli = ~ 7, ..D-1 — h theory
2073 (i) "2 T(3)T ()
For D > 5, Pauli dominates PP - Sl |
. -4
over sqPauli at larger
prediction at D = oo
. O D=5
(1/D expansion) -
. . . O D=20
As D increases, the oscillating h theory

behaviour becomes weaker




6. Summary and future prospects



Summary

Investigated the “gauge-fixed” model, proposed recently to regularize the type
lIB matrix model without breaking the Lorentz symmetry.

For N=2, D=5, y — 0 limit seems to be smooth.

In ¥y > 0 region, the dominant saddle and behaviour of gauge-fixed model is
different, as compared to gauge-unfixed model and SO(D) symmetric model.

In ¥ < 0 region, gauge-unfixed model is equivalent to SO(10) symmetric model,
the gauge-fixed model is equivalent to them only for large y < 0.

Future prospects

* Simulations for larger D, larger N and including fermions.



Thank you so much for your attention
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