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Introduction: The E11 Program

Dimensional reduction of 11D SUGRA on a torus down to 11− n
dimensions gives Kaluza-Klein scalars generating a coset space
possessing the following ‘exceptional symmetries’

Dimension Exceptional Symmetry Group Coset Space
10 (IIA) O(1, 1) -
10 (IIB) SL(2) SL(2)/SO(2)
9 GL(2) R GL(2)/SO(2)
8 E3 ∼ A2 × A1 SL(3) × SL(2)/SO(3) × SO(2)
7 E4 ∼ A4 SL(5)/SO(5)

6 E5 ∼ D5 SO(5, 5)/SO(5) × SO(5)

5 E6 E6/Sp(8)

4 E7 E7/SU(8)

3 E8 E8/SO(16)

2 E9 E9/Ic (E9)

1 E10 E10/Ic (E10)
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Introduction: The E11 Program

In 2001 it was conjectured [1] that the initial 11D theory possesses
E11, with Dynkin diagram

• 11
|

• − • − • − • − • − • − • − • − • − •
1 2 3 4 5 6 7 8 9 10

(1)
as an exceptional symmetry group, explaining the above table.

In 2015 it was shown [2] that the low energy effective action of the
bosonic sector of M-theory arises from the non-linear realization of

E11 ⊗s l1/Ic(E11). (2)

Here l1 is the vector representation of E11, and Ic(E11) is a
generalization of the coset subgroups in the table.

This is a generalization of the vielbein formulation of general
relativity, which is based on GL(11)⊗s l1/SO(1, 10).
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The Kac-Moody Algebra K27

In 2001 it was also conjectured [1] that the Kac-Moody algebra K27

• 26 • 27
| |

• − • − • − • − • − · · · − • − • − •
1 2 3 4 5 23 24 25

(3)

is a symmetry of the 26D closed bosonic string.

In this talk we will show [3] that the low energy effective action of
the 26D closed bosonic string arises from the non-linear realization
of

K27 ⊗s l1/Ic(K27) (4)
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The Kac-Moody Algebra K27

K27 possesses generators Rα given by (a = 1, ..., 26)

K a
b , R ; Ra1a2 , Ra1..a22 ; Ra1a2 , Ra1..a22 ;

Ra1..a24 , Ra1..a23,b , Ra1..a25,b1..b19 ; . . . (5)

These generators satisfy an algebra of the form

[K a
b,R] = 0 , [K a

b,R
c1c2 ] = 2δ[c1bR

|a|c2] , [Ra1a2 ,Rb1b2 ] = 0 ,

[Ra1a2 ,Rb1..b22 ] = Ra1a2b1..b22 + Rb1..b22[a1,a2] , . . . (6)

We associate fields Aα to the K27 generators of equation (5)

ha
b — Graviton

ϕ — Dilaton
Aa1a2 — Kalb-Ramond
Aa1..a22 — Dual Kalb-Ramond
Aa1..a24 — Dual Scalar
ha1..a23,b — Dual Graviton
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Involution Invariant Subalgebra of K27

We now define the subalgebra Ic(K27).

The Serre relations are preserved by the involution Ic

Ic(EA) = ηABFB , Ic(FA) = ηABEB , Ic(HA) = ηABHB , (7)

Ic(AB) = Ic(A)Ic(B) . (8)

We can define involution invariant combinations, which generate
Ic(K27).

The Ic(K27) subalgebra is explicitly generated by

Ja1a2 = ηa1eK
e
a2 − ηa2eK

e
a1 ; (9)

Sa1a2 = Rb1b2ηb1a1ηb2a2 − Ra1a2 ,

Sa1..a22 = Rb1..b22ηb1a1 ..ηb22a22 − Rb1..b22 ; (10)

Sa1..a24 = Rb1..b24ηb1a1 ..ηb24a24 + Rb1..b24 , ...
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Vector Representation of K27

The vector representation of K27 is denoted l1 and possesses
generators lA given by

Pa ; Qa , Z a1..a21 ; Z a1..a23
{1} , Z a1..a23

{2} ,

Z a1..a22,b , Z a1..a24,b1..b19 , Z a1..a25,b1..b18 ; . . . (11)

The higher coordinates represent charges of higher branes in the
theory.

They generate a ‘generalized space-time’ with coordinates xA

given by
xa , ya ; xa1..a21 , .... (12)

The xa, ya are the D26 coordinates of Double Field Theory (DFT).
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Vector Representation of K27

The Ra1..a22 sends Pa into Z a1..a21 via [Ra1..a21 ,Pb] = 21δ
[a1
b Z a2..a22],

and Qa into the Z a1..a23 under a similar relation. This implies that
we will have to introduce branes into our eventual closed string
theory.

It is thought [2] that the higher coordinates may reflect the
breakdown of space-time near a black hole, giving an approximate
description of more fundamental degrees of freedom.

“Space-time is doomed” in the E11 program, we must extend the
usual xµ into a ‘generalized space-time’ xΠ.
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Nonlinear Realisation of K27 ⊗s l1/Ic(K27)

The non-linear realisation of K27 ⊗s l1/Ic(K27) begins from a
group element

g = gl1gK27 ,

gl = exp(xaPa + yaQ
a + ...) , (13)

gK27 = Πα exp(AαR
α) = .. exp(Aa1a2R

a1a2) exp(ha
bK a

b).

We then compute the Maurer-Cartan form

Ω ≡ g−1dg = dxΠEΠ
A(lA + GA,αR

α) (14)

EΠ
A is the generalized vielbein of a generalized geometry

on the generalized space-time.

Gα are generalized covariant derivatives of the goldstone
fields Aα.

Note the Gα = dxΠEΠ
AGA,α involve derivatives ∂A w.r.t. the

generalized coordinates xA.
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Nonlinear Realisation of K27 ⊗s l1/Ic(K27)

The generalized vielbein is given explicitly by

EΠ
A = (det e)−

1
2


eµ

a −2e−ϕAµa −22eϕAµa1..a21 . . .
0 e−ϕeµa 0 . . .
0 0 eϕeµ1..µ21

a1..a21 . . .
...

...
...

. . .

 (15)

The covariant derivatives Gα are given explicitly by (ea
b ≡ (eh)a

b)

Ga
b = (e−1de)a

b , G = dϕ ;

Ga1a2 = e−ϕeµ1
a1ea2

µ2dAµ1µ2 ,

Ga1..a22 = e+ϕea1
µ1 . . . ea22

µ22dAµ1..µ22 ;

Ga1..a24 = ea1
µ1 . . . ea24

µ24(dAµ1..µ24 − dA[µ1..µ22
Aµ23µ24]) (16),

Ga1.a23,b = ea1
µ1 .ea23

µ23eb
ν(dhµ1.µ23,ν−dA[µ1.µ22

Aµ23]ν+dA[µ1..a22Aµ23ν]) ,

...
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Nonlinear Realisation of K27 ⊗s l1/Ic(K27)

The group element of K27 ⊗s l1/Ic(K27) satisfies g ≡ g ′ = gh for
h ∈ Ic(K27).

Under the local h ∈ Ic(K27) transformations g → gh, the covariant
derivatives transform covariantly since

Ω → Ω′ = h−1(Ω)h + h−1dh (17)

In other words, the covariant derivatives of (16) transform under
(17) into linear combinations of one another.

The set of all covariant derivatives form a trivial irrep of
K27 ⊗s l1/Ic(K27).

11 / 25



Nonlinear Realisation of K27 ⊗s l1/Ic(K27)

Setting h = I − Λa1a2Sa1a2 − Λa1..a22Sa1..a22 + ... they transform as

δGa
b = 4ΛebG ea − 1

6Λ
e1e2G e1e2δ

b
a + (22)221!Λe1..e21bGe1..e21a

− 11
1222!Λ

e1..e22Ge1..e22δ
b
a ,

δG = 1
3Λ

e1e2G e1e2 − 22!
6 Λe1..e22Ge1..e22 ; (18)

δG a1a2 = 2 · 2Λe[a1G(a2]
e) − 2Λa1a2G + 24!

12 Λ
e1.e22Ge1.e22a1a2 + .. ,

δGa1.a22 = 2 · 22Λe[a1.a21G(a22]
e) + 2Λa1.a22G − 4 · 23Λe1e2Ge1e2a1.a22 + ..,

δGa1.a24 = Λ[a1a2Ga3.a24] − Λ[a1.a22Ga23a24] + .. ,

δGa1.a23,b = G[a1.a22Λa23]b − G[a1.a22Λa23b] − Λ[a1.a22Ga23]b + Λ[a1.a22Ga23b].
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Nonlinear Realisation of K27 ⊗s l1/Ic(K27)

The transformations in equation (17) are on the differential forms
as a whole.

In Ω = dxΠEΠ
A(lA + GA,αR

α), the A index will change under
Ω′ = h−1Ωh + h−1dh and must be compensated via the A in EΠ

A.

This means that the A in ∂A varies, so derivatives rotate into one
another.

To level one we have derivatives ∂a, ∂̂
a, ∂̂a1..a21 , and the Cartan

form coefficients GA,α transform under (24) in the A index as

δGa,α = −2ΛaeĜ
e,
α − 22Λae1..e21G

e1..e21,
α , (19)

δĜ a,
α = −10ΛaeGe,α , δG a1..a21,

α = −11 · 21!Λa1..a21eGe,α .
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First Order Duality Relations

We now construct a non-trivial irrep of K27 ⊗s l1/Ic(K27).

Seek linear combinations of covariant derivatives that transform
covariantly into one another under Ic(K27).

These are first order duality relations

Da ≡ Ga +
1
12εa

c1..c25Gc1,c2..c25

Da1a2a3 ≡ G[a1,a2a3] +
1
6εa1a2a3

c1..c23Gc1,c2..c23 (20)

Da,b1b2 ≡ (det e)1/2ωa,b1b2 − εb1b2
c1..c24Gc1,c2..c24,a

Da is the dilaton duality,

Da1a2a3 is the Kalb-Ramond duality,

Da,b1b2 is the gravity dual-gravity duality.

We are finding a formulation of the 26D Closed Bosonic String in
terms of First Order duality relations.
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First Order Duality Relations

However, the derivatives in say

Da1a2a3 ≡ G[a1,a2a3] +
1
6εa1a2a3

c1..c23Gc1,c2..c23

also vary under Ω′ = h−1Ωh + h−1dh

In order to construct a consistent irrep, we must generalize (20) to
include higher level derivative contributions.
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First Order Duality Relations

We must generalize Da1a2a3 to a duality involving level one
derivative contributions

Da1a2a3 ≡ G[a1a2a3] +
1
6εa1a2a3

e1..e23Ge1e2..e23 , (21)

where now

G[a1a2a3] ≡ G [a1,a2a3] +
1

5
Ĝ[a1,a2a3] +

4 · 22 · 23
3

Ĝ e1..e21,
e1..e21a1a2a3

+2 · 22 · 23Ĝ e1..e21,
e1..e21[a1a2,a3] (22)

and

G[a1a2..a23] ≡ G[a1,a2...a23] + (2/21!)Ĝ[a1...a21,a22a23] − (4/5)Ĝ c,
ca1..a23

+(2/5)Ĝ c,
a1..a23,c (23)
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First Order Duality Relations

Similarly
Da ≡ Ga +

1
12εa

c1..c25Gc1,c2..c25 ,

generalies into

Da ≡ Ga + e1εa
b1..b25Gb1,b2..b25 (24)

where we have

Ga ≡ Ga +
1

15
Ĝ

e,

ea −
22

3
Ĝ e2..e22,

e2..e22a (25)

Da,b1b2 gets a similar modification into Da,b1b2 [3].

We call the Da,α analog of Da,α the l1-extension of Da,α.
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First Order Duality Relations

Under the transformations of equation (18) and (19), the
l1-extended duality relations get sent into

δDa =
1
2Λ

e1e2Dae1e2 + ...

δDa1a2a3 = −2D[aΛb1b2] + 2Λc
[a1D|c|,a2a3] + ... (26)

δDa,b1b2 = −11
12εb1b2

c1..c24Λac1..c21Dc22c23c24

+ 11
8 εb1b2

c1..c24Λc1..c22Dc23c24a + ...

The first order duality relations along with their l1-extensions and
higher level contributions form an irreducible representation of
K27 ⊗s l1/Ic(K27).

We can thus consistently set all duality relations in the
representation, and their l1-extensions, to zero, and indeed
interpret them as duality relations.
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Second-Order Equations of Motion

We can use the first-order duality relations in equation (20) to
form second-order equations of motion (eom).

We do this by projecting out one of the two fields using
derivatives:

E = ∂µ[(det e)
1/2Dµ]

E ν1ν2 = ∂µ[(det e)
1
2D

µ,ν1ν2 ] (27)

We can then form l1-extended versions of (27) and vary these
under (19) and (20).
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Second-Order Equations of Motion

For example, E gets l1-extended into

E = {(det e)
1
2 ea

µ∂µG
a − Gc,a

cG a +
1

2
Ga,c

cG a}

+
2

3

1

10
∂µ{(det e)

1
2 Ĝ

τ2,

τ2
µ} − 2

10
G

[µ,τ1τ2]Ĝτ2,(µτ1)

− 4

10
Ĝ

c,

,cbG
b − 22

22!

6 · 11 · 21!
∂µ{Ĝ τ1,τ2..τ22µΛτ1..τ22(det e)

1
2 }

− 21!21

11 · 21!
Ĝ e2..e22,

e2..e22bG
b (28)

− 22

11 · 21!
εa1..a26G [a1,a2a3]Ĝa5..a24,[a25a26](

1

6 · 6e2
)

−e1ε
e1..e26Ge1,e2e3Ge4,e5..e26
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Second-Order Equations of Motion

The result of varying E and Eν1ν2 is that we find the second order
eom

E = ∂ν [(det e)
1
2G ν ] + 1

2G [c1,c2c2]G
[c1,c2c3] = 0

E ν1ν2 ≡ ∂µ[(det e)
1
2G

[µ,ν1ν2]]− GµG
[µ,ν1ν2] = 0 (29)

(det e)Ẽa
b ≡ (det e)Ra

b−9G [a,e1e2]G
[b,e1e2]+ 1

4δa
bG [e1,e2e3]G

[e1,e2e3]

−6GaG
b = 0

These are the familiar second order equations of motion of the
closed bosonic string in 26 dimensions, coming from the action

S =

∫
d26x det e{R − 1

6(∂
µϕ)(∂µϕ)− 1

3e
− 2

6
ϕFµνρF

µνρ}

=

∫
d26x{(det e)R − 1

6G
aGa − 3G[a,bc]G

[a,bc]} (30)
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Second-Order Equations of Motion

The eom of the closed bosonic string arise from K27 symmetry
being realized non-linearly.

Taken all together the eom form an irreducible representation of
K27 ⊗s l1/Ic(K27).
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Conclusion

The Kac-Moody algebra K27 is a symmetry of the theory
closed bosonic strings with branes.

Contains O(D,D) DFT for D = 26: ignoring node 26 gives
O(26, 26), xa, ya DFT coordinates.

Brane contributions are required in our theory of closed
strings.

Truncating the theory at any stage and throwing away higher
fields or higher coordinates will cause everything to fail, there
cannot be any ‘consistent truncations’.
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Future Questions

Compute Brane dynamics: Qa represents the charge of a
string. Z a1..a21 is the charge of a 21-brane.

Deeper relationship to E11 and other string theories.

Kac-Moody Algebra interpretation of all 5 string theories at
low energies? Have M-theory, IIA, IIB. Heterotic?

Generalized Symmetries in K27?
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