

The Joint ESS- J-PARC & SAKURA Workshop

Strategies for high availability of JAEA-ADS and ESS linacs

Bruce Yee-Rendon*

Nuclear Transmutation & Accelerator Division Japan Proton Accelerator Research Complex (J-PARC) Japan Atomic Energy Agency (JAEA)

Acknowledgments: R. Miyamoto (ESS), ESS accelerator group, Y. Kondo (J-PARC), J. Tamura (J-PARC), S. Meigo (J-PARC), F. Maekawa(J-PARC), J-PARC accelerator and Nuclear Transmutation Division.

*byee@post.j-parc.jp

Contents

- Introduction
- 2023 SAKURA Mobility Programme
- Summary

ESS -J-PARC & SAKURA Workshop June 10th-12th, 2024 B. Yee-Rendon 3/9

ESS & JAEA-ADS linac

JAEA-ADS linac

Common linac features			ESS	JAEA-ADS
Particle		Proton		
MW beam power source			5	30
Superconducting RF linac		•	90 MeV to 2 GeV Double SR and Elliptical	 2.5 Mev to 1.5 GeV HWR, Single SR, & Elliptical
High duty			4%	CW
Space charge dependent			62.5 mA / 352.21 MHz	20 mA/162 MHz
High Availability: Restricted beam trips [1,2] <u>New strategies are required</u>	< 10s		2 x10 ⁵	2x10 ⁴
	10s < t < 5min		4 x10 ⁴	2x10 ³
	> 5min		350	42

[1] E. Bargallo et al, IPAC2015, MOPTY045, 1033, 2015.

[2] H. Takei et al. J. Nucl. Sci. Technol., 49, 21, 2012.

Motivation:

High availability in high-power linacs is **becoming essential** for their operation.

Goal:

Develop **advanced strategies to design and run** superconducting linacs efficiently.

Strategy:

- Passive: **Robust** beam optics **design** to **reduce** the probability of **beam trips** in linacs.
- Active: Minimize beam downtime by adjusting nearby elements settings for faster beam recovery. The so-called "local compensation."

Procedure:

- <u>Share knowledge and develop robust beam optics</u> adjustment strategies to increase the availability of both the ESS and JAEA-ADS linacs.
- <u>Share the experiences from the ESS linac design, construction, and commissioning</u> to the design of JAEA-ADS linac.

Goal:

Local compensations

6/9

Increase availability by fast beam recovery due to element failures (magnets of RF cavities).

Local compensation (B. Yee-Rendon et al. PRAB, 25, 080101, 2022)

Example:

Effective for single SRF

Local compensations

Discussion outcomes:

- Local compensation **exploits the linac modularity**; thus, it can be suitable for any linacs.
- Some margin in the elements' setting (e.g., gradient in RF cavity and magnets) is required.
- Upgrade control systems (e.g., LLRF) coupling with optics models are necessary for its implementation.
- Compensation policy must be adjusted according to the linac reliability requirements.

FPARC

Beam optics design: Low energy part

Summary

Results

- Design **review** of the JAEA-ADS superconducting linac.
- **Improved** the strategy for local compensations in superconducting linacs.

Current & future work

- **Continue the discussion** with our ESS colleague.
- Beam dynamic analysis of **local compensation in the ESS** lattice (applied proposal for **2024 SAKURA** Mobility Programme).
- Local compensation implementation first at ESS and later on JAEA-ADS.
- Consequently, **push forward the efficiency and availability** of present and future linacs.