KEK ARTBLにおける DuTiP1の性能評価の現状

奈良女子大学大学院

人間文化総合科学研究科数物科学専攻

修士1年 尾﨑恵美

2024/12/20 SOIPIX量子イメージング研究会2024

- 加速器を用いて高エネルギーに加速した 粒子同士を衝突させ、出来た粒子を検出 器を使って観測
- 実験結果から新たな物理法則や新粒子の 探索を行う
- •加速器も大事だが、検出器の性能も重要
- 高レートかつ高放射線耐性を持つ検出器の開発が必要

Belle II実験

茨城県つくば市の高エネルギー加速器研究機構で行われている国際共同実験

- SuperKEKB加速器とBelle Ⅱ測定器 で構成
- 7GeVの電子と4GeVの陽電子を高頻 度で衝突させる
- ・衝突によって生成するB中間子やタ ウレプトンの様子をBelle Ⅱ測定器 で測定することで粒子・反粒子の対 称性の破れや新しい物理法則を探索

Belle II測定器

- ・衝突点を覆うように役割の異なる複数の検出器で構成
- ・衝突後に様々な粒子が生成されるため、運動量やエネルギーの測定、飛跡の再構成、粒子の識別が必要

崩壊点検出器(VXD)

- Belle Ⅱ測定器の最内層に存在する
 半導体検出器
- 荷電粒子の通過位置を測定
- 崩壊点を再構成するのが目的

Belle II測定器

- ・衝突点を覆うように役割の異なる複数の検出器で構成
- ・衝突後に様々な粒子が生成されるため、 運動量やエネルギーの測定、飛跡の再 構成、粒子の識別が必要

崩壞点検出器(VXD)

- SuperKEKB加速器がアップグレードするとビー ムバックグラウンドの量も増える
- 物理事象のデータを効率よく検出しつつ、バック
 グラウンド信号を除去するセンサーの開発が必要

DuTiP1(Dual Timer Pixel)

- Belle II 測定器の最内層にある vertex detectorへの設置に向けて 開発中のSOIピクセル検出器
- ・ピクセル内にデジタル化に使う7bit
 のタイマーが2つ存在
- タイマーが二つあることで1つのタ イマーが動作中でも次のヒットを検 出することができる

チップサイズ	6.0mm×6.0mm		
有感領域	2.7mm×2.7mm		
ピクセルサイズ	45µm×45µm		
ピクセル数	64×64		
厚み	310µm		
読み出し方法	バイナリー		

DuTiPのコンセプト

DuTiPのコンセプト

DuTiPのコンセプト

先行研究

- •昨年のテストビーム実験の結果:DuTiPの検出効率は60%程度であった
- ・プリアンプ回路のパラメータの最適化が 必要
- ・検出効率が低く見えた要因としてトリ ガーに使用したXRPIX5の遅延が影響し ていると考えられる
 - 最大で10µsecの遅延
 - DuTiP1は7bitタイマーの127クロック目 (6.7µsec)でコインシデンスをとるため10%ほど 取り漏らしてしまっている

→今回のビームテストではシンチレーター で取ったデータで検出効率の評価を行う

KEK ARTBLでの電子ビーム試験

2024/12/5-10 **INTPIX4NA**(telescope)

XRPIX5(Trigger) 有感領域:21.9×13.8mm²

実験の目的…荷電粒子通過に対する検出効率を求める ←解析は今ココ

- ・まずXR5トリガーでDutipの位置を確認
- ・シンチレーターでトリガーしたデータで検出効率を評価
- ・アナログ回路のパラメータを変えて測定

KEK ARTBLでの電子ビーム試験

2024/12/5-10 INTPIX4NA(telescope)

Data Takingの流れ Beam→Scinti. or XRPIX5からトリガー信号 →TLU→DuTiP→PC XRPIX5(Trigger) 有感領域:21.9×13.8mm²

- ピクセルサイズ:36µm角
- 1ピクセル単位で読み出し領域を 決めることがでできる

Trigger領域の違いによるhitmapの比較①

RA

Trigger領域の違いによるhitmapの比較②

イベント数:10000

- RA:56~303,CA:90~288を更に3領域
 に分けて時のヒットマップを作成
- RA:136~216,CA:90~288に設定した
 際にカウント数の増加が見られた

→DuTiPは電子ビームを捉えている ことがわかった

まとめ・今後

- Belle II vertex detector向けに開発されたDuTiPの動作試験 を行っている
- KEK ARTBLでの電子ビーム試験の現段階の解析の結果として、DuTiPが電子ビームを捉えていることがわかった
- 今後の解析では、telescopeからのtrackの情報を用いて検出 効率と位置分解能の評価を行う

BACK UP

セットアップ

Preamp

表 A.1: ALPIDE アンプ回路のパラメータ一覧。単位は [mV] である。

端子名 / 名称	Sim_v1	Sim_v2	Li	1	2	3
VDIODE	700	700	1300	1300	700	1300
VREF_RESET	1096	1096	750	750	1096	750
VREF_AMP	1166	1166	1166	1166	1166	1166
VCASP	400	400	50	50	400	400
VCLIP	300	500	308	308	300	308
VREF_SHP	1140	1140	1140	1140	1140	1140
VCASN	700	1100	1500	1100	1100	1500
VREF_DB	1166	1166	1166	1166	1166	1166
VCASN2	1000	1000	1800	1800	1000	1800

ALICE実験のアップグレード向けに 開発されたALPIDEチップのアンプ をSOIプロセス向けに改変したもの

端子名	機能		
VDIODE	入力リセット電圧		
VREF_RESET	入力リセット電流		
VREF_AMP	初段電流		
N_SENS	入力		
VCASP	P オン電流		
VCLIP	クリッピング電圧		
VREF_SHP	フィードバック電流		
VCASN	OUTA baseline		
VREF_DB	スレッショルド電流		
VCASN2	Nオン電圧		
OUT_B	デジタル出力		
OUT_A	アナログ出力		