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Hydrogen polymer electrolyte membrane fuel cells (PEMFCs)
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PEMFCs for vehicles and their challenges
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The ‘cold-start’ of the PEMFC:
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PEMFCs for vehicles and their challenges

Successful and failed cold-starts”
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* For commercialized FC vehicles: post-shutdown
purging + self-heating utilizing waste heat from
power generation. (enabling start-up at -30°C)

e Start-up strategy, material selection and cell
design need to be optimized.

e |tis critical to understand the mechanism for the
freezing and thawing phenomenon in cell.

Y. Yang, et al., Energies, 14 (2021) 660



Visualizing the water distribution using neutron radiography

Example:
Amount of water at cathode side flow channel as a
function of loading condition (i.e., current)*

X- ray cross section

H D C O A Si Fe : . . :
@0 o o o Mid loading, 1A/cm? High loading, 1.8A/cm?
— . E:0.519V,R : 94.1 mQ cm’ E:0.037V,R:78.9mQcm’
neutron cross section Anr=0V, Ana+Anp=0V Anr=0.048 V, Ana+Anp=0.434 V
(@1.8A/cm?)

Neutron radiography:

e Sensitive to water

* Non-destructive, non-intrusive

* Allows quantification
0 0.35

Transmission = exp(-21) Thickness of liquid water

2: heutron attenuation, t: thickness .
M. Nasu, et al., J. Power Sources, 530 (2022) 231251



Visualizing the water distribution using neutron radiography
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Visualizing the water distribution using neutron radiography
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The water behavior during a successful and a failed cold-start
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T profiles during a successful and failed cold-start were simulated by the climate chamber.

Similar water distributions were observed.
Very different tendency of freezing for upstream and downstream cathode.

W. Yoshimune, et al., ChemRxiv, (2024)
Y. Higuchi, etal., Comms. Eng., 3 (2024) 33



Identifying water and ice

using energy selective neutron radiography
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Visualization of water and ice in full-sized cell
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Due to the temperature distribution in the
large-scale FC, freezing starts from the
GDL/CL at cathode downstream.

‘Ice front’ propagates from downstream
toward upstream, eventually causing a
shut-down

Upstream continues to power before
shut-down, the newly generated water
accumulates at flow channel and later
freezes in-place.
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Y. Higuchi, etal., Comms. Eng., 3 (2024) 33




Toward cross-sectional water phase visualization using energy

selective neutron radiography
MPL/CL

Why cross-section? Subsitrate MP: Ll C:L P,EM 100 um

Cathode |88 © |

* To verify the hypothesis from the full-sized cell observation.

* Tounderstand where on the thickness direction is the freezing
most likely to be initiated (CL? GDL? or the interface?).

- e e - e NI e b g

The low neutron counts during cross-sectional water phase
visualization:

Channel

Water distribution in the cell cross-
section observed by synchrotron X-ray
radiography”

* Area of the cross-section is small 2 small FoV
* Operando imaging = short exposure (integration) time

* Energy selection

10 "W. Yoshimune, et al., Adv. Energy Sustainability Res., 5 (2024) 2400126



Toward cross-sectional water phase visualization using energy

selective neutron radiography
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Cross-sectional observation: steady states

Temperature / °C
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Cross-sectional observation: dynamic process

Temperature [°C]
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‘.  Trade-off is inevitable due to
1 6Dl the low neutron count.

| 1 « Theintegration time and
binning size are constraint by
the desired resolutions for
cross-sectional observation.
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* Need to improve experimental
techniques to further increase
the neutron count
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Integrationtime 22 s
Spatial binning size: 1.75 mm x 0.109 mm



Summary

High-resolution neutron radiography instrument + operando techniques (climate
chamber) to unravel the cold-start problem for the off-the-shelf vehicle PEMFCs.

* Ordinary neutron radiography: effective method of decoding water behavior in
cell under realistic scenarios.

* Energy selective neutron radiography: directly visualize the distribution of
water and ice phases within the sample to pin-point areas that are vulnerable to
freezing.

* Energy selective neutron radiography on cross-sectional direction:

reasonably good resolution for ex-situ observations, but challenging to obtain
good neutron statistics for operando observations.
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Step 1 (full-sized cells)
In-plane water behavior
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‘ Step 2 (full-sized cells) ‘

In-plane phase change

Step 3 (model cells)
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