## Identifying liquid water and ice in model PEMFCs with high temporal-spatial resolutions using energy-selective neutron imaging

Fangzhou SONG<sup>1,\*</sup>, Yuki HIGUCHI<sup>2</sup>, Satoru KATO<sup>2</sup>, Wataru YOSHIMUNE<sup>2</sup>, Shogo HIBI<sup>2</sup>, Hiroshi NOZAKI<sup>2</sup>, Kousuke HIROI<sup>1</sup>, Shin-ichi TAKATA<sup>1</sup>, Takenao SHINOHARA<sup>1</sup>

<sup>1</sup>J-PARC Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan <sup>2</sup>Toyota Central R&D Labs., Inc., Nagakute, Aichi 480-1192, Japan

The 4<sup>th</sup> J-PARC Symposium, 2024/10/15, Mito

#### Hydrogen polymer electrolyte membrane fuel cells (PEMFCs)





#### **PEMFCs for vehicles and their challenges**





#### **PEMFCs for vehicles and their challenges**

#### Successful and failed cold-starts\*



- For commercialized FC vehicles: post-shutdown purging + self-heating utilizing waste heat from power generation. (enabling start-up at -30°C)
- Start-up strategy, material selection and cell design need to be optimized.
- It is critical to understand the mechanism for the freezing and thawing phenomenon in cell.

### Visualizing the water distribution using neutron radiography



Neutron radiography:

- Sensitive to water
- Non-destructive, non-intrusive
- Allows quantification

4

Transmission =  $exp(-\Sigma t)$  $\Sigma$ : neutron attenuation, t: thickness

#### Example:

Amount of water at cathode side flow channel as a function of loading condition (i.e., current)<sup>\*.</sup>



### Visualizing the water distribution using neutron radiography





- Detector
- Gas supply system
- H<sub>2</sub> dilution unit

#### TOYOTA CENTRAL R&D LABS





- Cell
- Climate chamber
- Mass flow control
- Workstation

5

#### Visualizing the water distribution using neutron radiography



#### The water behavior during a successful and a failed cold-start



- *T* profiles during a successful and failed cold-start were simulated by the climate chamber.
- Similar water distributions were observed.
- Very different tendency of freezing for upstream and downstream cathode.

W. Yoshimune, et al., ChemRxiv, (2024) Y. Higuchi, et al., Comms. Eng., **3** (2024) 33

#### Identifying water and ice

using energy selective neutron radiography



K. Isegawa, *et al.*, *NIM-A*, **1040** (2022) 167260 Y. Higuchi, *et al.*, *Chem. Phys. Phys. Chem.*, **23** (2021) 1062

#### Visualization of water and ice in full-sized cell



- Due to the temperature distribution in the large-scale FC, freezing starts from the GDL/CL at cathode downstream.
- 'Ice front' propagates from downstream toward upstream, eventually causing a shut-down
- Upstream continues to power before shut-down, the newly generated water accumulates at flow channel and later freezes in-place.

Y. Higuchi, et al., Comms. Eng., 3 (2024) 33

# Toward cross-sectional water phase visualization using energy selective neutron radiography

Why cross-section?

- To verify the hypothesis from the full-sized cell observation.
- To understand where on the thickness direction is the freezing most likely to be initiated (CL? GDL? or the interface?).

The low neutron counts during cross-sectional water phase visualization:

- Area of the cross-section is small  $\rightarrow$  small FoV
- Operando imaging  $\rightarrow$  short exposure (integration) time
- Energy selection



Water distribution in the cell crosssection observed by synchrotron X-ray radiography<sup>\*</sup>

\*W. Yoshimune, et al., Adv. Energy Sustainability Res., **5** (2024) 2400126

# Toward cross-sectional water phase visualization using energy selective neutron radiography



| Collimator to detector<br>distance | Sample to detector<br>distance | L/D | FoV                    | Short wl | Long wl | Exp. time |
|------------------------------------|--------------------------------|-----|------------------------|----------|---------|-----------|
| ~7.5 m                             | 14 mm                          | 250 | $7	imes7\mathrm{mm^2}$ | 2.58 Å   | 6.92 Å  | ~5.42s    |

#### **Cross-sectional observation: steady states**



12

#### **Cross-sectional observation: dynamic process**



- Trade-off is inevitable due to the low neutron count.
- The integration time and binning size are constraint by the desired resolutions for cross-sectional observation.
- Need to improve experimental techniques to further increase the neutron count

Integration time 22 s Spatial binning size: 1.75 mm x 0.109 mm

#### Summary

High-resolution neutron radiography instrument + *operando* techniques (climate chamber) to unravel the cold-start problem for the off-the-shelf vehicle PEMFCs.

- Ordinary neutron radiography: effective method of decoding water behavior in cell under realistic scenarios.
- Energy selective neutron radiography: directly visualize the distribution of water and ice phases within the sample to pin-point areas that are vulnerable to freezing.
- Energy selective neutron radiography on cross-sectional direction: reasonably good resolution for *ex-situ* observations, but challenging to obtain good neutron statistics for *operando* observations.



The results presented are made possible by the collaboration research between J-PARC, Toyota Central R&D Labs. Inc., and CROSS.

The works were carried out under the User program of MLF, J-PARC (proposal numbers 2019L0403, 2019A0080, 2021B0317, 2022B0215, 2023B0249 and 2023A0253)

Special thanks to all members for the preparation and assistance during the experiments.

